Calculate the molar absorptivity of a [tex]0.5 \times 10^{-3} \, \text{M}[/tex] solution, which has an absorbance of 0.17 when the path length is 1.3 cm.



Answer :

To calculate the molar absorptivity (ε) of a solution using the Beer-Lambert Law, we can follow these steps:

1. Understand the Beer-Lambert Law:
The Beer-Lambert Law is given by the equation:
[tex]\[ A = \varepsilon \cdot c \cdot l \][/tex]
where:
- [tex]\( A \)[/tex] is the absorbance,
- [tex]\( \varepsilon \)[/tex] is the molar absorptivity (in units of M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex]),
- [tex]\( c \)[/tex] is the concentration of the solution (in moles per liter, M),
- [tex]\( l \)[/tex] is the path length of the cell (in cm).

2. Identify the given values:
- Concentration ([tex]\( c \)[/tex]) = [tex]\( 0.5 \times 10^{-3} \)[/tex] M
- Absorbance ([tex]\( A \)[/tex]) = 0.17
- Path length ([tex]\( l \)[/tex]) = 1.3 cm

3. Rearrange the Beer-Lambert equation to solve for molar absorptivity [tex]\( \varepsilon \)[/tex]:
[tex]\[ \varepsilon = \frac{A}{c \cdot l} \][/tex]

4. Substitute the given values into the rearranged equation:
[tex]\[ \varepsilon = \frac{0.17}{(0.5 \times 10^{-3}) \cdot 1.3} \][/tex]

5. Perform the calculation:
[tex]\[ \varepsilon = \frac{0.17}{0.0005 \cdot 1.3} \][/tex]
[tex]\[ \varepsilon = \frac{0.17}{0.00065} \][/tex]
[tex]\[ \varepsilon \approx 261.538 \][/tex]

6. Result:
The molar absorptivity [tex]\( \varepsilon \)[/tex] of the solution is approximately [tex]\( 261.54 \)[/tex] M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex].

Therefore, the molar absorptivity of a [tex]\( 0.5 \times 10^{-3} \)[/tex] M solution with an absorbance of 0.17 and a path length of 1.3 cm is [tex]\( 261.54 \)[/tex] M[tex]\(^{-1}\)[/tex] cm[tex]\(^{-1}\)[/tex].