1.1.4 Determine the minimum number of tortillas that Chloe must sell in order to break even.

1.1.5 Chloe sold 240 tortillas. Complete the income and expense statement on the ANNEXURE PROVIDED for the sale of 240 tortillas and show how much profit she made.

[tex]\[
\begin{array}{|l|l|l|}
\hline
\multicolumn{2}{|c|}{\text{Income}} & \multicolumn{1}{|c|}{\text{Expense}} \\
\hline
\text{Sale of} & & \text{Fixed cost} \\
\text{240 tortillas} & & \\
\hline
& & \text{Cost of each tortilla} \\
\hline
\text{Total Income} & & \text{Total Cost of 240 tortillas} \\
\hline
& \text{Profit} & \\
\hline
\end{array}
\][/tex]



Answer :

### Answer:

#### 1.1.4 Determine the minimum number of tortillas that Chloe must sell in order to break even

To break even, Chloe needs to cover her total costs (fixed costs plus variable costs) with her sales revenue.
Break-even point (number of tortillas) can be calculated using the given information:

Fixed cost: [tex]\( \$150 \)[/tex]
Cost per tortilla: [tex]\( \$2.5 \)[/tex]
Sale price per tortilla: [tex]\( \$3.5 \)[/tex]

Break-even point is calculated as:

[tex]\[ \text{Break-even point} = \frac{\text{Fixed cost}}{\text{Sale price per tortilla} - \text{Cost per tortilla}} \][/tex]

[tex]\[ \text{Break-even point} = \frac{150}{3.5 - 2.5} \][/tex]

[tex]\[ \text{Break-even point} = \frac{150}{1} \][/tex]

[tex]\[ \text{Break-even point} = 150 \][/tex]

Thus, Chloe must sell at least 150 tortillas to break even.

#### 1.1.5 Chloe sold 240 tortillas. Complete the income and expense statement on the ANNEXURE PROVIDED for the sale of 240 tortillas and show how much profit she made.

Income:
- Sale price per tortilla: [tex]\( \$3.5 \)[/tex]
- Number of tortillas sold: 240

Total Income:

[tex]\[ \text{Total Income} = 240 \times 3.5 \][/tex]

[tex]\[ \text{Total Income} = 840 \][/tex]

Expenses:
- Fixed cost: [tex]\( \$150 \)[/tex]
- Cost per tortilla: [tex]\( \$2.5 \)[/tex]
- Number of tortillas produced: 240

Total Cost:

[tex]\[ \text{Variable Cost} = 240 \times 2.5 \][/tex]

[tex]\[ \text{Variable Cost} = 600 \][/tex]

[tex]\[ \text{Total Cost} = 150 + 600 \][/tex]

[tex]\[ \text{Total Cost} = 750 \][/tex]

Profit:

[tex]\[ \text{Profit} = \text{Total Income} - \text{Total Cost} \][/tex]

[tex]\[ \text{Profit} = 840 - 750 \][/tex]

[tex]\[ \text{Profit} = 90 \][/tex]

Hence, Chloe's total income from selling 240 tortillas is [tex]\( \$840 \)[/tex], the total cost is [tex]\( \$750 \)[/tex], and the profit amounts to [tex]\( \$90 \)[/tex].

Here is the completed income and expense statement:

\begin{tabular}{|l|l|l|}
\hline
\multicolumn{2}{|c|}{ Income } & \multicolumn{1}{|c|}{ Expense } \\
\hline
\begin{tabular}{l}
Sale of \\
240 tortillas
\end{tabular} & \[tex]$840 & Fixed cost: \$[/tex]150 \\
\hline
& & \begin{tabular}{l}
Cost of each \\
tortilla: \[tex]$2.5 \end{tabular} \\ \hline Total Income: \$[/tex]840 & & Total Cost of 240 tortillas: \[tex]$750 \\ \hline & Profit: \$[/tex]90 \\
\hline
\end{tabular}