Answer :
To evaluate the expression [tex]\((-2+1)^2 + 5 \cdot (12 \div 3) - 9\)[/tex], we will use the order of operations often referred to as PEMDAS: Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right).
1. First, we handle the expression inside the parentheses:
[tex]\[ -2 + 1 = -1 \][/tex]
So, the expression now becomes:
[tex]\[ (-1)^2 + 5 \cdot (12 \div 3) - 9 \][/tex]
2. Next, we take care of the exponentiation:
[tex]\[ (-1)^2 = 1 \][/tex]
Now, the expression is:
[tex]\[ 1 + 5 \cdot (12 \div 3) - 9 \][/tex]
3. We then perform the division inside the parentheses:
[tex]\[ 12 \div 3 = 4 \][/tex]
Our expression is simplified to:
[tex]\[ 1 + 5 \cdot 4 - 9 \][/tex]
4. Now, we proceed with the multiplication:
[tex]\[ 5 \cdot 4 = 20 \][/tex]
The expression now reads:
[tex]\[ 1 + 20 - 9 \][/tex]
5. Finally, we perform the addition and subtraction from left to right:
[tex]\[ 1 + 20 = 21 \][/tex]
[tex]\[ 21 - 9 = 12 \][/tex]
Therefore, the value of the expression is [tex]\(12\)[/tex].
1. First, we handle the expression inside the parentheses:
[tex]\[ -2 + 1 = -1 \][/tex]
So, the expression now becomes:
[tex]\[ (-1)^2 + 5 \cdot (12 \div 3) - 9 \][/tex]
2. Next, we take care of the exponentiation:
[tex]\[ (-1)^2 = 1 \][/tex]
Now, the expression is:
[tex]\[ 1 + 5 \cdot (12 \div 3) - 9 \][/tex]
3. We then perform the division inside the parentheses:
[tex]\[ 12 \div 3 = 4 \][/tex]
Our expression is simplified to:
[tex]\[ 1 + 5 \cdot 4 - 9 \][/tex]
4. Now, we proceed with the multiplication:
[tex]\[ 5 \cdot 4 = 20 \][/tex]
The expression now reads:
[tex]\[ 1 + 20 - 9 \][/tex]
5. Finally, we perform the addition and subtraction from left to right:
[tex]\[ 1 + 20 = 21 \][/tex]
[tex]\[ 21 - 9 = 12 \][/tex]
Therefore, the value of the expression is [tex]\(12\)[/tex].