Answer :
Sure, let's solve these step-by-step.
1. Calculate [tex]\( f(2) \)[/tex]:
Using the function [tex]\( f(x) = \frac{1}{2} x \)[/tex],
[tex]\[ f(2) = \frac{1}{2} \times 2 = 1 \][/tex]
So,
[tex]\[ f(2) = 1.0 \][/tex]
2. Calculate [tex]\( f^{-1}(1) \)[/tex]:
Using the inverse function [tex]\( f^{-1}(x) = 2 x \)[/tex],
[tex]\[ f^{-1}(1) = 2 \times 1 = 2 \][/tex]
So,
[tex]\[ f^{-1}(1) = 2 \][/tex]
3. Calculate [tex]\( f^{-1}(f(2)) \)[/tex]:
First, let's find [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 1 \][/tex]
Then, apply the inverse function to the result:
[tex]\[ f^{-1}(f(2)) = f^{-1}(1) = 2 \][/tex]
So,
[tex]\[ f^{-1}(f(2)) = 2.0 \][/tex]
4. Calculate [tex]\( f^{-1}(-2) \)[/tex]:
Using the inverse function [tex]\( f^{-1}(x) = 2 x \)[/tex],
[tex]\[ f^{-1}(-2) = 2 \times -2 = -4 \][/tex]
So,
[tex]\[ f^{-1}(-2) = -4 \][/tex]
5. Calculate [tex]\( f(-4) \)[/tex]:
Using the function [tex]\( f(x) = \frac{1}{2} x \)[/tex],
[tex]\[ f(-4) = \frac{1}{2} \times -4 = -2 \][/tex]
So,
[tex]\[ f(-4) = -2.0 \][/tex]
6. Calculate [tex]\( f(f^{-1}(-2)) \)[/tex]:
First, let's find [tex]\( f^{-1}(-2) \)[/tex]:
[tex]\[ f^{-1}(-2) = -4 \][/tex]
Then, apply the function to the result:
[tex]\[ f(f^{-1}(-2)) = f(-4) = -2 \][/tex]
So,
[tex]\[ f(f^{-1}(-2)) = -2.0 \][/tex]
Combining all the calculated results, we have:
[tex]\[ \begin{array}{l} f(2) = 1.0 \\ f^{-1}(1) = 2 \\ f^{-1}(f(2)) = 2.0 \\ f^{-1}(-2) = -4 \\ f(-4) = -2.0 \\ f(f^{-1}(-2)) = -2.0 \end{array} \][/tex]
1. Calculate [tex]\( f(2) \)[/tex]:
Using the function [tex]\( f(x) = \frac{1}{2} x \)[/tex],
[tex]\[ f(2) = \frac{1}{2} \times 2 = 1 \][/tex]
So,
[tex]\[ f(2) = 1.0 \][/tex]
2. Calculate [tex]\( f^{-1}(1) \)[/tex]:
Using the inverse function [tex]\( f^{-1}(x) = 2 x \)[/tex],
[tex]\[ f^{-1}(1) = 2 \times 1 = 2 \][/tex]
So,
[tex]\[ f^{-1}(1) = 2 \][/tex]
3. Calculate [tex]\( f^{-1}(f(2)) \)[/tex]:
First, let's find [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 1 \][/tex]
Then, apply the inverse function to the result:
[tex]\[ f^{-1}(f(2)) = f^{-1}(1) = 2 \][/tex]
So,
[tex]\[ f^{-1}(f(2)) = 2.0 \][/tex]
4. Calculate [tex]\( f^{-1}(-2) \)[/tex]:
Using the inverse function [tex]\( f^{-1}(x) = 2 x \)[/tex],
[tex]\[ f^{-1}(-2) = 2 \times -2 = -4 \][/tex]
So,
[tex]\[ f^{-1}(-2) = -4 \][/tex]
5. Calculate [tex]\( f(-4) \)[/tex]:
Using the function [tex]\( f(x) = \frac{1}{2} x \)[/tex],
[tex]\[ f(-4) = \frac{1}{2} \times -4 = -2 \][/tex]
So,
[tex]\[ f(-4) = -2.0 \][/tex]
6. Calculate [tex]\( f(f^{-1}(-2)) \)[/tex]:
First, let's find [tex]\( f^{-1}(-2) \)[/tex]:
[tex]\[ f^{-1}(-2) = -4 \][/tex]
Then, apply the function to the result:
[tex]\[ f(f^{-1}(-2)) = f(-4) = -2 \][/tex]
So,
[tex]\[ f(f^{-1}(-2)) = -2.0 \][/tex]
Combining all the calculated results, we have:
[tex]\[ \begin{array}{l} f(2) = 1.0 \\ f^{-1}(1) = 2 \\ f^{-1}(f(2)) = 2.0 \\ f^{-1}(-2) = -4 \\ f(-4) = -2.0 \\ f(f^{-1}(-2)) = -2.0 \end{array} \][/tex]