Use [tex]f(x)=\frac{1}{2} x[/tex] and [tex]f^{-1}(x)=2 x[/tex] to solve the problems.

[tex]\[
\begin{array}{l}
f(2) = \square \\
f^{-1}(1) = \square \\
f^{-1}(f(2)) = \square \\
f^{-1}(-2) = \square \\
f(-4) = \square \\
f\left(f^{-1}(-2)\right) = \square
\end{array}
\][/tex]



Answer :

Sure, let's solve these step-by-step.

1. Calculate [tex]\( f(2) \)[/tex]:

Using the function [tex]\( f(x) = \frac{1}{2} x \)[/tex],
[tex]\[ f(2) = \frac{1}{2} \times 2 = 1 \][/tex]
So,
[tex]\[ f(2) = 1.0 \][/tex]

2. Calculate [tex]\( f^{-1}(1) \)[/tex]:

Using the inverse function [tex]\( f^{-1}(x) = 2 x \)[/tex],
[tex]\[ f^{-1}(1) = 2 \times 1 = 2 \][/tex]
So,
[tex]\[ f^{-1}(1) = 2 \][/tex]

3. Calculate [tex]\( f^{-1}(f(2)) \)[/tex]:

First, let's find [tex]\( f(2) \)[/tex]:
[tex]\[ f(2) = 1 \][/tex]
Then, apply the inverse function to the result:
[tex]\[ f^{-1}(f(2)) = f^{-1}(1) = 2 \][/tex]
So,
[tex]\[ f^{-1}(f(2)) = 2.0 \][/tex]

4. Calculate [tex]\( f^{-1}(-2) \)[/tex]:

Using the inverse function [tex]\( f^{-1}(x) = 2 x \)[/tex],
[tex]\[ f^{-1}(-2) = 2 \times -2 = -4 \][/tex]
So,
[tex]\[ f^{-1}(-2) = -4 \][/tex]

5. Calculate [tex]\( f(-4) \)[/tex]:

Using the function [tex]\( f(x) = \frac{1}{2} x \)[/tex],
[tex]\[ f(-4) = \frac{1}{2} \times -4 = -2 \][/tex]
So,
[tex]\[ f(-4) = -2.0 \][/tex]

6. Calculate [tex]\( f(f^{-1}(-2)) \)[/tex]:

First, let's find [tex]\( f^{-1}(-2) \)[/tex]:
[tex]\[ f^{-1}(-2) = -4 \][/tex]
Then, apply the function to the result:
[tex]\[ f(f^{-1}(-2)) = f(-4) = -2 \][/tex]
So,
[tex]\[ f(f^{-1}(-2)) = -2.0 \][/tex]

Combining all the calculated results, we have:

[tex]\[ \begin{array}{l} f(2) = 1.0 \\ f^{-1}(1) = 2 \\ f^{-1}(f(2)) = 2.0 \\ f^{-1}(-2) = -4 \\ f(-4) = -2.0 \\ f(f^{-1}(-2)) = -2.0 \end{array} \][/tex]