Multiply the radicals together:

[tex]\sqrt{12} \cdot \sqrt{6} \cdot \sqrt{x^3} \cdot \sqrt{x^7}[/tex]

A. [tex]\sqrt{72 x^{21}}[/tex]

B. [tex]\sqrt{18 x^{10}}[/tex]

C. [tex]\sqrt{18 x^{21}}[/tex]

D. [tex]\sqrt{72 x^{10}}[/tex]



Answer :

To multiply the radicals together, we first use the property of square roots that states:
[tex]\[ \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \][/tex]

Let’s apply this to the given expression:
[tex]\[ \sqrt{12} \cdot \sqrt{6} \cdot \sqrt{x^3} \cdot \sqrt{x^7} \][/tex]

First, we combine the numerical terms under one square root:
[tex]\[ \sqrt{12} \cdot \sqrt{6} = \sqrt{12 \cdot 6} \][/tex]

Multiply the numbers inside the square root:
[tex]\[ 12 \cdot 6 = 72 \][/tex]

So,
[tex]\[ \sqrt{12} \cdot \sqrt{6} = \sqrt{72} \][/tex]

Next, we combine the variable terms:
[tex]\[ \sqrt{x^3} \cdot \sqrt{x^7} = \sqrt{x^3 \cdot x^7} \][/tex]

Using the property of exponents that states [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]:
[tex]\[ x^3 \cdot x^7 = x^{3+7} = x^{10} \][/tex]

Thus,
[tex]\[ \sqrt{x^3} \cdot \sqrt{x^7} = \sqrt{x^{10}} \][/tex]

Combine all terms under one square root:
[tex]\[ \sqrt{12} \cdot \sqrt{6} \cdot \sqrt{x^3} \cdot \sqrt{x^7} = \sqrt{72} \cdot \sqrt{x^{10}} = \sqrt{72 \cdot x^{10}} \][/tex]

So the final expression is:
[tex]\[ \sqrt{72 x^{10}} \][/tex]

Among the given options, the correct choice is:
(D) [tex]\(\sqrt{72 x^{10}}\)[/tex]