35. Write an exponential function [tex]\([tex]y = a \cdot b^x\)[/tex] that represents the data in the table:

[tex]\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & -2 & -1 & 0 & 1 & 2 \\
\hline
y & \frac{1}{9} & \frac{1}{3} & 1 & 3 & 9 \\
\hline
\end{array}
\][/tex]



Answer :

To write an exponential function [tex]\( y = a \cdot b^x \)[/tex] that represents the given data in the table, let's follow a clear, step-by-step approach:

1. Identify Constants [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:

- First, observe the values of [tex]\( y \)[/tex] when [tex]\( x \)[/tex] is 0:

[tex]\[ \begin{align*} x & = 0 \\ y & = 1 \\ \end{align*} \][/tex]

Substituting [tex]\( x = 0 \)[/tex] into the exponential function [tex]\( y = a \cdot b^0 \)[/tex], we get:

[tex]\[ y = a \cdot 1 = a \][/tex]

Therefore, [tex]\( a = 1 \)[/tex].

2. Determine the Base [tex]\( b \)[/tex]:

- Use another pair of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values to find [tex]\( b \)[/tex]. Consider [tex]\( x = 1 \)[/tex]:

[tex]\[ \begin{align*} x & = 1 \\ y & = 3 \\ \end{align*} \][/tex]

Substitute these values into the function:

[tex]\[ 3 = 1 \cdot b^1 \implies b = 3 \][/tex]

Therefore, [tex]\( b = 3 \)[/tex].

3. Formulate the Exponential Function:

Using the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] found:

[tex]\[ y = 1 \cdot 3^x \quad \text{or simply} \quad y = 3^x \][/tex]

4. Verification:

To ensure our function [tex]\( y = 3^x \)[/tex] fits all given points in the table, let’s check:

[tex]\[ \begin{array}{cc} x & y = 3^x \\ \hline -2 & 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \\ -1 & 3^{-1} = \frac{1}{3} \\ 0 & 3^0 = 1 \\ 1 & 3^1 = 3 \\ 2 & 3^2 = 9 \\ \end{array} \][/tex]

The function [tex]\( y = 3^x \)[/tex] consistently matches all given [tex]\( y \)[/tex] values from the table.

Therefore, the exponential function that represents the data in the table is:

[tex]\[ y = 3^x \][/tex]