Answer :
Let's work through the problem step-by-step.
### 16.1 Events in a Sample Space
Given:
- [tex]\( n(S) = 30 \)[/tex] (total number of elements in the sample space [tex]\( S \)[/tex])
- [tex]\( n(A) = 15 \)[/tex] (number of elements in event [tex]\( A \)[/tex])
- [tex]\( n(B) = 20 \)[/tex] (number of elements in event [tex]\( B \)[/tex])
- [tex]\( n(A \cap B) = 6 \)[/tex] (number of elements in both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex])
#### 16.1.1 Venn Diagram
To represent this situation with a Venn diagram:
1. Draw a rectangle to represent the sample space [tex]\( S \)[/tex] with [tex]\( n(S) = 30 \)[/tex].
2. Within [tex]\( S \)[/tex], draw two overlapping circles, one for event [tex]\( A \)[/tex] and the other for event [tex]\( B \)[/tex].
3. Label the circles with [tex]\( n(A) = 15 \)[/tex] and [tex]\( n(B) = 20 \)[/tex]. The overlapping area represents [tex]\( n(A \cap B) = 6 \)[/tex].
The Venn diagram helps visualize the relationships between the sets.
#### 16.1.2 Value of [tex]\( n(A \cup B) \)[/tex]
To find the value of [tex]\( n(A \cup B) \)[/tex], we use the principle of inclusion and exclusion:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Plugging in the given values:
[tex]\[ n(A \cup B) = 15 + 20 - 6 = 29 \][/tex]
So, [tex]\( n(A \cup B) = 29 \)[/tex].
#### 16.1.3 Probability [tex]\( P(A \cap B) \)[/tex]
The probability that a randomly selected element from [tex]\( S \)[/tex] is in both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ P(A \cap B) = \frac{n(A \cap B)}{n(S)} \][/tex]
Plugging in the given values:
[tex]\[ P(A \cap B) = \frac{6}{30} = 0.2 \][/tex]
So, the probability [tex]\( P(A \cap B) \)[/tex] is [tex]\( 0.2 \)[/tex].
#### Determining Independence
Two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if and only if:
[tex]\[ P(A \cap B) = P(A) \times P(B) \][/tex]
First, find [tex]\( P(A) \)[/tex] and [tex]\( P(B) \)[/tex]:
[tex]\[ P(A) = \frac{n(A)}{n(S)} = \frac{15}{30} = 0.5 \][/tex]
[tex]\[ P(B) = \frac{n(B)}{n(S)} = \frac{20}{30} = 0.6667 \][/tex]
Now, calculate:
[tex]\[ P(A) \times P(B) = 0.5 \times 0.6667 = 0.3333 \][/tex]
Since:
[tex]\[ P(A \cap B) = 0.2 \neq P(A) \times P(B) = 0.3333 \][/tex]
Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are not independent.
### 16.2 Password Format
Given:
- Alphabet of 26 letters.
- Digits from 0 to 9 (10 digits in total).
- Letters and digits can repeat.
#### 16.2.1 Number of Passwords with 2 Letters Followed by 2 Digits
Each position can be occupied as follows:
- First letter: 26 choices
- Second letter: 26 choices
- First digit: 10 choices
- Second digit: 10 choices
Total number of passwords:
[tex]\[ 26^2 \times 10^2 = 676 \times 100 = 67600 \][/tex]
So, the number of passwords that can be created using 2 letters followed by 2 digits is 67,600.
#### 16.2.2 Determining the Least Number of Digits for 3 Million Passwords
Steve needs at least 3 million different passwords. Let [tex]\( d \)[/tex] be the number of digits needed. The total number of passwords is given by:
[tex]\[ 26^2 \times 10^d = 3,000,000 \][/tex]
Simplify to solve for [tex]\( d \)[/tex]:
[tex]\[ 676 \times 10^d = 3,000,000 \][/tex]
[tex]\[ 10^d = \frac{3,000,000}{676} \approx 4438.497 \][/tex]
To find the smallest integer [tex]\( d \)[/tex] such that [tex]\( 10^d \geq 4438.497 \)[/tex]:
[tex]\[ d \approx \lceil \log_{10}(4438.497) \rceil \approx 3.65 \][/tex]
[tex]\[ d = 4 \][/tex]
So, Steve will need at least 4 digits to have 3 million different passwords.
### 16.1 Events in a Sample Space
Given:
- [tex]\( n(S) = 30 \)[/tex] (total number of elements in the sample space [tex]\( S \)[/tex])
- [tex]\( n(A) = 15 \)[/tex] (number of elements in event [tex]\( A \)[/tex])
- [tex]\( n(B) = 20 \)[/tex] (number of elements in event [tex]\( B \)[/tex])
- [tex]\( n(A \cap B) = 6 \)[/tex] (number of elements in both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex])
#### 16.1.1 Venn Diagram
To represent this situation with a Venn diagram:
1. Draw a rectangle to represent the sample space [tex]\( S \)[/tex] with [tex]\( n(S) = 30 \)[/tex].
2. Within [tex]\( S \)[/tex], draw two overlapping circles, one for event [tex]\( A \)[/tex] and the other for event [tex]\( B \)[/tex].
3. Label the circles with [tex]\( n(A) = 15 \)[/tex] and [tex]\( n(B) = 20 \)[/tex]. The overlapping area represents [tex]\( n(A \cap B) = 6 \)[/tex].
The Venn diagram helps visualize the relationships between the sets.
#### 16.1.2 Value of [tex]\( n(A \cup B) \)[/tex]
To find the value of [tex]\( n(A \cup B) \)[/tex], we use the principle of inclusion and exclusion:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Plugging in the given values:
[tex]\[ n(A \cup B) = 15 + 20 - 6 = 29 \][/tex]
So, [tex]\( n(A \cup B) = 29 \)[/tex].
#### 16.1.3 Probability [tex]\( P(A \cap B) \)[/tex]
The probability that a randomly selected element from [tex]\( S \)[/tex] is in both events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ P(A \cap B) = \frac{n(A \cap B)}{n(S)} \][/tex]
Plugging in the given values:
[tex]\[ P(A \cap B) = \frac{6}{30} = 0.2 \][/tex]
So, the probability [tex]\( P(A \cap B) \)[/tex] is [tex]\( 0.2 \)[/tex].
#### Determining Independence
Two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent if and only if:
[tex]\[ P(A \cap B) = P(A) \times P(B) \][/tex]
First, find [tex]\( P(A) \)[/tex] and [tex]\( P(B) \)[/tex]:
[tex]\[ P(A) = \frac{n(A)}{n(S)} = \frac{15}{30} = 0.5 \][/tex]
[tex]\[ P(B) = \frac{n(B)}{n(S)} = \frac{20}{30} = 0.6667 \][/tex]
Now, calculate:
[tex]\[ P(A) \times P(B) = 0.5 \times 0.6667 = 0.3333 \][/tex]
Since:
[tex]\[ P(A \cap B) = 0.2 \neq P(A) \times P(B) = 0.3333 \][/tex]
Events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are not independent.
### 16.2 Password Format
Given:
- Alphabet of 26 letters.
- Digits from 0 to 9 (10 digits in total).
- Letters and digits can repeat.
#### 16.2.1 Number of Passwords with 2 Letters Followed by 2 Digits
Each position can be occupied as follows:
- First letter: 26 choices
- Second letter: 26 choices
- First digit: 10 choices
- Second digit: 10 choices
Total number of passwords:
[tex]\[ 26^2 \times 10^2 = 676 \times 100 = 67600 \][/tex]
So, the number of passwords that can be created using 2 letters followed by 2 digits is 67,600.
#### 16.2.2 Determining the Least Number of Digits for 3 Million Passwords
Steve needs at least 3 million different passwords. Let [tex]\( d \)[/tex] be the number of digits needed. The total number of passwords is given by:
[tex]\[ 26^2 \times 10^d = 3,000,000 \][/tex]
Simplify to solve for [tex]\( d \)[/tex]:
[tex]\[ 676 \times 10^d = 3,000,000 \][/tex]
[tex]\[ 10^d = \frac{3,000,000}{676} \approx 4438.497 \][/tex]
To find the smallest integer [tex]\( d \)[/tex] such that [tex]\( 10^d \geq 4438.497 \)[/tex]:
[tex]\[ d \approx \lceil \log_{10}(4438.497) \rceil \approx 3.65 \][/tex]
[tex]\[ d = 4 \][/tex]
So, Steve will need at least 4 digits to have 3 million different passwords.