Select the best answer for the question.

Solve the following equation: [tex]6y - 20 = 2y - 4[/tex].

A. [tex]y = 16[/tex]
B. [tex]y = 2[/tex]
C. [tex]y = 3[/tex]
D. [tex]y = 4[/tex]



Answer :

To solve the equation [tex]\(6y - 20 = 2y - 4\)[/tex], we need to perform a series of algebraic steps to isolate [tex]\(y\)[/tex]. Follow these steps:

1. Move all terms involving [tex]\(y\)[/tex] to one side of the equation and constant terms to the other side:
[tex]\[ 6y - 20 = 2y - 4 \][/tex]
Subtract [tex]\(2y\)[/tex] from both sides to combine the [tex]\(y\)[/tex] terms:
[tex]\[ 6y - 2y - 20 = -4 \][/tex]
This simplifies to:
[tex]\[ 4y - 20 = -4 \][/tex]

2. Move the constant term on the left side to the right side of the equation:
Add 20 to both sides to isolate the [tex]\(y\)[/tex] term:
[tex]\[ 4y - 20 + 20 = -4 + 20 \][/tex]
This simplifies to:
[tex]\[ 4y = 16 \][/tex]

3. Solve for [tex]\(y\)[/tex]:
Divide both sides by 4 to find [tex]\(y\)[/tex]:
[tex]\[ y = \frac{16}{4} \][/tex]
[tex]\[ y = 4 \][/tex]

The value of [tex]\(y\)[/tex] that satisfies the equation [tex]\(6y - 20 = 2y - 4\)[/tex] is [tex]\(y = 4\)[/tex]. Therefore, the correct answer is:

D. [tex]\(y = 4\)[/tex]