The graph of [tex]$y=-\frac{1}{2} x+2$[/tex] is positive over the interval [tex]$(-\infty, 4)$[/tex] and negative over the interval [tex][tex]$(4, \infty)$[/tex][/tex]. What happens on the graph when [tex]$x=4$[/tex]? Explain.

Choose the correct answer below.

A. The function is negative at [tex]$x=4$[/tex] because it is positive over the interval [tex]$(-\infty, 4)$[/tex].

B. The function is positive at [tex][tex]$x=4$[/tex][/tex] because it is negative over the interval [tex]$(4, \infty)$[/tex].

C. There is a zero at [tex]$x=4$[/tex] because the function is changing from positive to negative at [tex][tex]$x=4$[/tex][/tex].

D. There is a zero at [tex]$x=4$[/tex] because the function is changing from negative to positive at [tex]$x=4$[/tex].



Answer :

Let's carefully analyze the behavior of the function [tex]\( y = -\frac{1}{2}x + 2 \)[/tex] around [tex]\( x = 4 \)[/tex] and consider the given intervals.

First, we need to understand what the function does at [tex]\( x = 4 \)[/tex].

1. Calculate the value of [tex]\( y \)[/tex] when [tex]\( x = 4 \)[/tex]:

[tex]\[ y = -\frac{1}{2}(4) + 2 \][/tex]

Simplify the expression:

[tex]\[ y = -\frac{1}{2} \cdot 4 + 2 = -2 + 2 = 0 \][/tex]

So, when [tex]\( x = 4 \)[/tex], the value of [tex]\( y \)[/tex] is 0.

2. Verify the behavior of the function on either side of [tex]\( x = 4 \)[/tex]:

- For [tex]\( x < 4 \)[/tex]:

[tex]\[ x < 4 \implies -\frac{1}{2}x + 2 > 0 \][/tex]

The function is positive over the interval [tex]\((- \infty, 4)\)[/tex].

- For [tex]\( x > 4 \)[/tex]:

[tex]\[ x > 4 \implies -\frac{1}{2}x + 2 < 0 \][/tex]

The function is negative over the interval [tex]\((4, \infty)\)[/tex].

Given that the function [tex]\( y \)[/tex] switches from positive to negative as [tex]\( x \)[/tex] moves through 4, the value of the function at [tex]\( x = 4 \)[/tex] is 0. This behavior is characteristic of what we call a zero or root of the function.

Therefore, the correct statement is:

C. There is a zero at [tex]\( x=4 \)[/tex] because the function is changing from positive to negative at [tex]\( x=4 \)[/tex].