Answer :
Sure, let's go through the steps to solve the equation:
[tex]\[ \frac{1}{3}(2x + 1) - \frac{1}{4}(2x + 1) = \frac{1}{12}(2 - x) \][/tex]
Step 1: Simplify the terms within the parentheses.
[tex]\[ \frac{1}{3}(2x + 1) \quad \text{and} \quad \frac{1}{4}(2x + 1) \][/tex]
Step 2: Multiply the terms outside the parentheses.
[tex]\[ \frac{1}{3}(2x + 1) = \frac{2x + 1}{3} \][/tex]
[tex]\[ \frac{1}{4}(2x + 1) = \frac{2x + 1}{4} \][/tex]
Step 3: Rewrite the equation using the simplified terms.
[tex]\[ \frac{2x + 1}{3} - \frac{2x + 1}{4} = \frac{2 - x}{12} \][/tex]
Step 4: Find a common denominator for the fractions on the left side. The common denominator for 3 and 4 is 12.
[tex]\[ \frac{8(2x + 1)}{24} - \frac{6(2x + 1)}{24} = \frac{2 - x}{12} \][/tex]
Step 5: Simplify the fractions on the left side.
[tex]\[ \frac{8(2x + 1) - 6(2x + 1)}{24} = \frac{2 - x}{12} \][/tex]
[tex]\[ \frac{2(2x + 1)}{24} = \frac{2 - x}{12} \][/tex]
[tex]\[ \frac{(2x + 1)}{12} = \frac{2 - x}{12} \][/tex]
Step 6: Since the denominators are equal, we can equate the numerators.
[tex]\[ 2x + 1 = 2 - x \][/tex]
Step 7: Solve for [tex]\( x \)[/tex].
[tex]\[ 2x + x = 2 - 1 \][/tex]
[tex]\[ 3x = 1 \][/tex]
[tex]\[ x = \frac{1}{3} \][/tex]
Thus, the solution to the equation [tex]\(\frac{1}{3}(2 x+1)-\frac{1}{4}(2 x+1)=\frac{1}{12}(2-x)\)[/tex] is:
[tex]\[ x = \frac{1}{3} \][/tex]
[tex]\[ \frac{1}{3}(2x + 1) - \frac{1}{4}(2x + 1) = \frac{1}{12}(2 - x) \][/tex]
Step 1: Simplify the terms within the parentheses.
[tex]\[ \frac{1}{3}(2x + 1) \quad \text{and} \quad \frac{1}{4}(2x + 1) \][/tex]
Step 2: Multiply the terms outside the parentheses.
[tex]\[ \frac{1}{3}(2x + 1) = \frac{2x + 1}{3} \][/tex]
[tex]\[ \frac{1}{4}(2x + 1) = \frac{2x + 1}{4} \][/tex]
Step 3: Rewrite the equation using the simplified terms.
[tex]\[ \frac{2x + 1}{3} - \frac{2x + 1}{4} = \frac{2 - x}{12} \][/tex]
Step 4: Find a common denominator for the fractions on the left side. The common denominator for 3 and 4 is 12.
[tex]\[ \frac{8(2x + 1)}{24} - \frac{6(2x + 1)}{24} = \frac{2 - x}{12} \][/tex]
Step 5: Simplify the fractions on the left side.
[tex]\[ \frac{8(2x + 1) - 6(2x + 1)}{24} = \frac{2 - x}{12} \][/tex]
[tex]\[ \frac{2(2x + 1)}{24} = \frac{2 - x}{12} \][/tex]
[tex]\[ \frac{(2x + 1)}{12} = \frac{2 - x}{12} \][/tex]
Step 6: Since the denominators are equal, we can equate the numerators.
[tex]\[ 2x + 1 = 2 - x \][/tex]
Step 7: Solve for [tex]\( x \)[/tex].
[tex]\[ 2x + x = 2 - 1 \][/tex]
[tex]\[ 3x = 1 \][/tex]
[tex]\[ x = \frac{1}{3} \][/tex]
Thus, the solution to the equation [tex]\(\frac{1}{3}(2 x+1)-\frac{1}{4}(2 x+1)=\frac{1}{12}(2-x)\)[/tex] is:
[tex]\[ x = \frac{1}{3} \][/tex]