What is the solution to the equation [tex]\frac{1}{3}(x-2)=\frac{1}{5}(x+4)+2[/tex]?

A. [tex]x=12[/tex]
B. [tex]x=14[/tex]
C. [tex]x=16[/tex]
D. [tex]x=26[/tex]



Answer :

To solve the equation [tex]\(\frac{1}{3}(x-2) = \frac{1}{5}(x+4) + 2\)[/tex], we will follow these steps:

1. Remove the fractions by finding a common denominator.

First, multiply both sides of the equation by the least common multiple (LCM) of the denominators, which are 3 and 5. The LCM of 3 and 5 is 15.

[tex]\[ 15 \cdot \frac{1}{3}(x-2) = 15 \cdot \left( \frac{1}{5}(x+4) + 2 \right) \][/tex]

2. Distribute the 15 into each term.

[tex]\[ 15 \cdot \frac{1}{3}(x-2) = 15 \cdot \frac{1}{3} \cdot (x-2) = 5(x - 2) \][/tex]

[tex]\[ 15 \cdot \left( \frac{1}{5}(x+4) + 2 \right) = 15 \cdot \frac{1}{5}(x+4) + 15 \cdot 2 = 3(x + 4) + 30 \][/tex]

So, substituting back we get:

[tex]\[ 5(x - 2) = 3(x + 4) + 30 \][/tex]

3. Simplify the equation.

First, distribute the constants on both sides:

[tex]\[ 5x - 10 = 3x + 12 + 30 \][/tex]

Combine like terms on the right side:

[tex]\[ 5x - 10 = 3x + 42 \][/tex]

4. Isolate the variable [tex]\(x\)[/tex].

Subtract [tex]\(3x\)[/tex] from both sides:

[tex]\[ 5x - 3x - 10 = 3x - 3x + 42 \][/tex]

[tex]\[ 2x - 10 = 42 \][/tex]

Add 10 to both sides:

[tex]\[ 2x - 10 + 10 = 42 + 10 \][/tex]

[tex]\[ 2x = 52 \][/tex]

5. Solve for [tex]\(x\)[/tex].

Divide both sides by 2:

[tex]\[ x = \frac{52}{2} \][/tex]

[tex]\[ x = 26 \][/tex]

So, the solution to the equation [tex]\(\frac{1}{3}(x-2) = \frac{1}{5}(x+4) + 2\)[/tex] is [tex]\( \boxed{26} \)[/tex].