Use long division to divide the polynomial [tex]33x^5 + 22x^4 - 50x^3 - 26x^2 + 13x[/tex] by [tex]3x^2 + 2x - 1[/tex]. Write your answer in standard form.

(1 point)

[tex]\square[/tex]

Check answer
Remaining Attempts: 3



Answer :

To divide the polynomial [tex]\(33 x^5 + 22 x^4 - 50 x^3 - 26 x^2 + 13 x \)[/tex] by [tex]\(3 x^2 + 2 x - 1\)[/tex] using long division, follow these steps:

Step 1: Set up the division:

Arrange the polynomials in standard form, ensuring they are written in descending order of their exponents. The numerator (dividend) is [tex]\(33 x^5 + 22 x^4 - 50 x^3 - 26 x^2 + 13 x\)[/tex] and the denominator (divisor) is [tex]\(3 x^2 + 2 x - 1\)[/tex].

Step 2: Divide the first term:

Divide the leading term of the numerator by the leading term of the denominator:
[tex]\[ \frac{33 x^5}{3 x^2} = 11 x^3 \][/tex]
This gives the first term of the quotient.

Step 3: Multiply and subtract:

Multiply [tex]\(11 x^3\)[/tex] by the entire divisor [tex]\(3 x^2 + 2 x - 1\)[/tex] and subtract the result from the original numerator:
[tex]\[ 11 x^3 \cdot (3 x^2 + 2 x - 1) = 33 x^5 + 22 x^4 - 11 x^3 \][/tex]

Subtract this product from the original numerator:
[tex]\[ (33 x^5 + 22 x^4 - 50 x^3 - 26 x^2 + 13 x) - (33 x^5 + 22 x^4 - 11 x^3) \][/tex]
This simplifies to:
[tex]\[ -50 x^3 - 26 x^2 + 13 x - (-11 x^3) = -50 x^3 + 11 x^3 - 26 x^2 + 13 x = -39 x^3 - 26 x^2 + 13 x \][/tex]

Step 4: Repeat the process:

Now we repeat the process with [tex]\(-39 x^3 - 26 x^2 + 13 x\)[/tex]:
[tex]\[ \frac{-39 x^3}{3 x^2} = -13 x \][/tex]

Multiply [tex]\(-13 x\)[/tex] by the entire divisor and subtract:
[tex]\[ -13 x \cdot (3 x^2 + 2 x - 1) = -39 x^3 - 26 x^2 + 13 x \][/tex]

Subtract this product from the new polynomial:
[tex]\[ (-39 x^3 - 26 x^2 + 13 x) - (-39 x^3 - 26 x^2 + 13 x) = 0 \][/tex]

Step 5: Obtain the quotient and remainder:

At this point, our remainder is [tex]\(0\)[/tex], and our quotient is the sum of terms we accumulated during the division steps: [tex]\(11 x^3 - 13 x\)[/tex].

Result:

Thus, the quotient is:
[tex]\[ Q(x) = 11 x^3 - 13 x \][/tex]
And the remainder is:
[tex]\[ R(x) = 0 \][/tex]

So, the answer in standard form is:
[tex]\[ \boxed{11 x^3 - 13 x} \][/tex]