Answer :
To find the circumference of a circle with a given diameter, we will use the formula for the circumference of a circle, which is:
[tex]\[ C = 2 \pi r \][/tex]
Here, [tex]\( C \)[/tex] is the circumference, [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.14159, and [tex]\( r \)[/tex] is the radius of the circle.
### Step-by-step Solution:
1. Determine the radius:
The diameter of the circle is given as 28 inches. The radius [tex]\( r \)[/tex] is half of the diameter.
[tex]\[ r = \frac{\text{diameter}}{2} \][/tex]
So,
[tex]\[ r = \frac{28}{2} = 14 \text{ inches} \][/tex]
2. Substitute the radius into the formula for the circumference:
Now that we have the radius, we can find the circumference using the formula.
[tex]\[ C = 2 \pi r \][/tex]
Substituting the values, we get,
[tex]\[ C = 2 \times \pi \times 14 \text{ inches} \][/tex]
3. Calculate the numerical value:
Using the value of [tex]\( \pi \approx 3.14159 \)[/tex],
[tex]\[ C \approx 2 \times 3.14159 \times 14 \][/tex]
[tex]\[ C \approx 87.96459430051421 \text{ inches} \][/tex]
4. Round to the nearest inch:
The problem asks us to round the answer to the nearest inch.
So,
[tex]\[ C \approx 88 \text{ inches} \][/tex]
### Conclusion:
The circumference of the circle is approximately 88 inches when rounded to the nearest inch.
The best answer choice is:
[tex]\[ \boxed{88 \text{ in.}} \][/tex]
This is answer D.
[tex]\[ C = 2 \pi r \][/tex]
Here, [tex]\( C \)[/tex] is the circumference, [tex]\( \pi \)[/tex] (pi) is a constant approximately equal to 3.14159, and [tex]\( r \)[/tex] is the radius of the circle.
### Step-by-step Solution:
1. Determine the radius:
The diameter of the circle is given as 28 inches. The radius [tex]\( r \)[/tex] is half of the diameter.
[tex]\[ r = \frac{\text{diameter}}{2} \][/tex]
So,
[tex]\[ r = \frac{28}{2} = 14 \text{ inches} \][/tex]
2. Substitute the radius into the formula for the circumference:
Now that we have the radius, we can find the circumference using the formula.
[tex]\[ C = 2 \pi r \][/tex]
Substituting the values, we get,
[tex]\[ C = 2 \times \pi \times 14 \text{ inches} \][/tex]
3. Calculate the numerical value:
Using the value of [tex]\( \pi \approx 3.14159 \)[/tex],
[tex]\[ C \approx 2 \times 3.14159 \times 14 \][/tex]
[tex]\[ C \approx 87.96459430051421 \text{ inches} \][/tex]
4. Round to the nearest inch:
The problem asks us to round the answer to the nearest inch.
So,
[tex]\[ C \approx 88 \text{ inches} \][/tex]
### Conclusion:
The circumference of the circle is approximately 88 inches when rounded to the nearest inch.
The best answer choice is:
[tex]\[ \boxed{88 \text{ in.}} \][/tex]
This is answer D.