Answer :
To determine the slope of the line described by the given points in the table, let's follow these steps:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 2 & 1 \\ \hline 4 & 7 \\ \hline 6 & 13 \\ \hline 8 & 19 \\ \hline \end{tabular} \][/tex]
1. Identify the coordinates:
- The given points are:
- Point 1: [tex]\((2, 1)\)[/tex]
- Point 2: [tex]\((4, 7)\)[/tex]
- Point 3: [tex]\((6, 13)\)[/tex]
- Point 4: [tex]\((8, 19)\)[/tex]
2. Choose any two points to determine the slope:
- We can choose the first two points for simplicity, so we use:
- Point 1: [tex]\((2, 1)\)[/tex]
- Point 2: [tex]\((4, 7)\)[/tex]
3. Calculate the differences in the coordinates:
- Difference in x-coordinates: [tex]\(\Delta x = 4 - 2 = 2\)[/tex]
- Difference in y-coordinates: [tex]\(\Delta y = 7 - 1 = 6\)[/tex]
4. Calculate the slope:
[tex]\[ \text{slope (m)} = \frac{\Delta y}{\Delta x} = \frac{6}{2} = 3.0 \][/tex]
Thus, the slope of the line described by the points in the table is [tex]\(3.0\)[/tex].
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline 2 & 1 \\ \hline 4 & 7 \\ \hline 6 & 13 \\ \hline 8 & 19 \\ \hline \end{tabular} \][/tex]
1. Identify the coordinates:
- The given points are:
- Point 1: [tex]\((2, 1)\)[/tex]
- Point 2: [tex]\((4, 7)\)[/tex]
- Point 3: [tex]\((6, 13)\)[/tex]
- Point 4: [tex]\((8, 19)\)[/tex]
2. Choose any two points to determine the slope:
- We can choose the first two points for simplicity, so we use:
- Point 1: [tex]\((2, 1)\)[/tex]
- Point 2: [tex]\((4, 7)\)[/tex]
3. Calculate the differences in the coordinates:
- Difference in x-coordinates: [tex]\(\Delta x = 4 - 2 = 2\)[/tex]
- Difference in y-coordinates: [tex]\(\Delta y = 7 - 1 = 6\)[/tex]
4. Calculate the slope:
[tex]\[ \text{slope (m)} = \frac{\Delta y}{\Delta x} = \frac{6}{2} = 3.0 \][/tex]
Thus, the slope of the line described by the points in the table is [tex]\(3.0\)[/tex].