Answered

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each value to the correct expression.

- 8
- 27
- 15
- 22
- 5
- 0

[tex]$4 + 8 \left(\frac{1}{4} + 2 \right)$[/tex] [tex]$\square$[/tex]

[tex]$1 + 5 \cdot 2 + (1 + 3)^2$[/tex] [tex]$\square$[/tex]

[tex]$0.25 \cdot 4^3 - 1$[/tex] [tex]$\square$[/tex]



Answer :

Let's match each value to the correct expression step-by-step. The given expressions are:

1. [tex]\( 4 + 8 \left(\frac{1}{4} + 2\right) \)[/tex]
2. [tex]\( 1 + 5 \cdot 2 + (1 + 3)^2 \)[/tex]
3. [tex]\( 0.25 \cdot 4^3 - 1 \)[/tex]

Working through each expression:

1. Expression: [tex]\( 4 + 8 \left(\frac{1}{4} + 2\right) \)[/tex]

This expression resolves to 22.

So, the first match is:

[tex]\( 4 + 8 \left( \frac{1}{4} + 2 \right) = 22 \)[/tex]

2. Expression: [tex]\( 1 + 5 \cdot 2 + (1 + 3)^2 \)[/tex]

This expression resolves to 27.

So, the second match is:

[tex]\( 1 + 5 \cdot 2 + (1 + 3)^2 = 27 \)[/tex]

3. Expression: [tex]\( 0.25 \cdot 4^3 - 1 \)[/tex]

This expression resolves to 15.

So, the third match is:

[tex]\( 0.25 \cdot 4^3 - 1 = 15 \)[/tex]

Putting it all together, we assign the values to the expressions as follows:

[tex]\[ 4 + 8 \left(\frac{1}{4} + 2\right) \rightarrow 22 \][/tex]
[tex]\[ 1 + 5 \cdot 2 + (1 + 3)^2 \rightarrow 27 \][/tex]
[tex]\[ 0.25 \cdot 4^3 - 1 \rightarrow 15 \][/tex]

Thus, the pairs are:

[tex]\[ 4 + 8 \left(\frac{1}{4} + 2\right) \quad 22 \][/tex]
[tex]\[ 1 + 5 \cdot 2 + (1 + 3)^2 \quad 27 \][/tex]
[tex]\[ 0.25 \cdot 4^3 - 1 \quad 15 \][/tex]