1) Given the equation [tex]$y = 3x - 2$[/tex], complete the table below:

\begin{tabular}{|l|l|}
\hline
[tex]$X$[/tex] & [tex]$Y$[/tex] \\
\hline
0 & \\
\hline
1 & \\
\hline
2 & \\
\hline
3 & \\
\hline
\end{tabular}



Answer :

To solve the given problem, we need to find the corresponding [tex]\( Y \)[/tex] values for each [tex]\( X \)[/tex] value using the equation [tex]\( y = 3x - 2 \)[/tex].

Let's calculate step-by-step for each [tex]\( X \)[/tex]:

1. For [tex]\( X = 0 \)[/tex]:
[tex]\[ y = 3(0) - 2 = 0 - 2 = -2 \][/tex]

2. For [tex]\( X = 1 \)[/tex]:
[tex]\[ y = 3(1) - 2 = 3 - 2 = 1 \][/tex]

3. For [tex]\( X = 2 \)[/tex]:
[tex]\[ y = 3(2) - 2 = 6 - 2 = 4 \][/tex]

4. For [tex]\( X = 3 \)[/tex]:
[tex]\[ y = 3(3) - 2 = 9 - 2 = 7 \][/tex]

Now, we can fill in the table with these values:

[tex]\[ \begin{tabular}{|l|l|} \hline X & Y \\ \hline 0 & -2 \\ \hline 1 & 1 \\ \hline 2 & 4 \\ \hline 3 & 7 \\ \hline \end{tabular} \][/tex]

So the completed table with the values is:

[tex]\[ \begin{tabular}{|l|l|} \hline X & Y \\ \hline 0 & -2 \\ \hline 1 & 1 \\ \hline 2 & 4 \\ \hline 3 & 7 \\ \hline \end{tabular} \][/tex]