To simplify the given expression [tex]\(\left(\frac{6.6 \div 0.11}{0.016 \div 0.8}\right) \times 0.01 + 1\)[/tex], we will follow a step-by-step approach.
1. Calculate the numerator of the main division:
[tex]\[
\frac{6.6}{0.11}
\][/tex]
Simplifying this:
[tex]\[
6.6 \div 0.11 = 60
\][/tex]
2. Calculate the denominator of the main division:
[tex]\[
\frac{0.016}{0.8}
\][/tex]
Simplifying this:
[tex]\[
0.016 \div 0.8 = 0.02
\][/tex]
3. Now, perform the division of the results from step 1 and step 2:
[tex]\[
\frac{60}{0.02}
\][/tex]
Simplifying this:
[tex]\[
60 \div 0.02 = 3000
\][/tex]
4. Multiply the result by 0.01:
[tex]\[
3000 \times 0.01
\][/tex]
Simplifying this:
[tex]\[
3000 \times 0.01 = 30
\][/tex]
5. Finally, add 1 to the result:
[tex]\[
30 + 1
\][/tex]
This gives:
[tex]\[
30 + 1 = 31
\][/tex]
So, the simplified result of the expression [tex]\(\left(\frac{6.6 \div 0.11}{0.016 \div 0.8}\right) \times 0.01 + 1\)[/tex] is [tex]\(31\)[/tex].