What is the solution to this equation?

[tex]\[ 3x + 17 + 5x = 7x + 10 \][/tex]

A. [tex]\( x = 27 \)[/tex]
B. [tex]\( x = -7 \)[/tex]
C. [tex]\( x = \frac{27}{15} \)[/tex]
D. [tex]\( x = -\frac{7}{15} \)[/tex]



Answer :

To solve the equation [tex]\(3x + 17 + 5x = 7x + 10\)[/tex] for [tex]\(x\)[/tex], follow these steps:

1. Combine like terms on both sides of the equation:
[tex]\[ 3x + 5x + 17 = 7x + 10 \][/tex]
Simplify the terms:
[tex]\[ 8x + 17 = 7x + 10 \][/tex]

2. Isolate the term with [tex]\(x\)[/tex] on one side of the equation. To do this, subtract [tex]\(7x\)[/tex] from both sides:
[tex]\[ 8x - 7x + 17 = 7x - 7x + 10 \][/tex]
Simplify the terms:
[tex]\[ x + 17 = 10 \][/tex]

3. Isolate [tex]\(x\)[/tex] by getting rid of the constant on the left side. Subtract 17 from both sides:
[tex]\[ x + 17 - 17 = 10 - 17 \][/tex]
Simplify the terms:
[tex]\[ x = -7 \][/tex]

So, the solution to the equation [tex]\(3x + 17 + 5x = 7x + 10\)[/tex] is [tex]\(x = -7\)[/tex].

Looking at the provided options:
A. [tex]\(x = 27\)[/tex]
B. [tex]\(x = -7\)[/tex]
C. [tex]\(x = \frac{27}{15}\)[/tex]
D. [tex]\(x = -\frac{7}{15}\)[/tex]

The correct answer is:
B. [tex]\(x = -7\)[/tex]