Simplify the polynomial expression. [tex](7n+1)(3n+5)-(4n-2)(3n+1)[/tex]

A. [tex]9n^2 + 40n + 7[/tex]

B. [tex]33n^2 + 36n + 17[/tex]

C. [tex]33n^2 - 36n - 17[/tex]

D. [tex]9n^2 - 40n - 7[/tex]



Answer :

To simplify the polynomial expression [tex]\((7n+1)(3n+5)-(4n-2)(3n+1)\)[/tex], we will follow these steps:

1. Expand each polynomial expression separately:
- Expand [tex]\((7n + 1)(3n + 5)\)[/tex]
- Expand [tex]\((4n - 2)(3n + 1)\)[/tex]

2. Combine the expanded expressions and simplify.

Let's start with expanding [tex]\((7n + 1)(3n + 5)\)[/tex]:
[tex]\[ (7n + 1)(3n + 5) \][/tex]
Using the distributive property (FOIL), we expand this:
[tex]\[ 7n \cdot 3n + 7n \cdot 5 + 1 \cdot 3n + 1 \cdot 5 \][/tex]
This results in:
[tex]\[ 21n^2 + 35n + 3n + 5 \][/tex]
Combining like terms:
[tex]\[ 21n^2 + 38n + 5 \][/tex]

Next, let's expand [tex]\((4n - 2)(3n + 1)\)[/tex]:
[tex]\[ (4n - 2)(3n + 1) \][/tex]
Using the distributive property (FOIL), we expand this:
[tex]\[ 4n \cdot 3n + 4n \cdot 1 - 2 \cdot 3n - 2 \cdot 1 \][/tex]
This results in:
[tex]\[ 12n^2 + 4n - 6n - 2 \][/tex]
Combining like terms:
[tex]\[ 12n^2 - 2n - 2 \][/tex]

Now subtract the second expanded expression from the first expanded expression:
[tex]\[ (21n^2 + 38n + 5) - (12n^2 - 2n - 2) \][/tex]
Distribute the negative sign:
[tex]\[ 21n^2 + 38n + 5 - 12n^2 + 2n + 2 \][/tex]
Combine the like terms:
[tex]\[ (21n^2 - 12n^2) + (38n + 2n) + (5 + 2) \][/tex]
Simplify each term:
[tex]\[ 9n^2 + 40n + 7 \][/tex]

Thus, the simplified polynomial expression is:
[tex]\[ \boxed{9n^2 + 40n + 7} \][/tex]

So, the correct answer is:
[tex]\[ \boxed{A. \, 9n^2 + 40n + 7} \][/tex]