If [tex]$JM = 5x - 8$[/tex] and [tex]$LM = 2x - 6$[/tex], which expression represents [tex][tex]$JL$[/tex][/tex]?

A. [tex]$3x - 2$[/tex]
B. [tex]$3x - 14$[/tex]
C. [tex][tex]$7x - 2$[/tex][/tex]
D. [tex]$7x - 14$[/tex]



Answer :

Certainly! Let's solve this step-by-step:

We are given two expressions:
- [tex]\( JM = 5x - 8 \)[/tex]
- [tex]\( LM = 2x - 6 \)[/tex]

We need to determine an expression for [tex]\( JL \)[/tex], which is the sum of [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex].

1. Write the expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JM = 5x - 8 \][/tex]
[tex]\[ LM = 2x - 6 \][/tex]

2. Add the expressions to find [tex]\( JL \)[/tex]:

[tex]\[ JL = JM + LM \][/tex]
Substitute the given expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

3. Combine like terms:

[tex]\[ JL = 5x + 2x - 8 - 6 \][/tex]

Simplify the expression:

[tex]\[ JL = 7x - 14 \][/tex]

So, the expression that represents [tex]\( JL \)[/tex] is [tex]\( 7x - 14 \)[/tex].

Among the given options, the correct one is:

[tex]\[ \boxed{7x - 14} \][/tex]