Answer :

To find the value of [tex]\(12 - \left(x^2 + y^2\right)\)[/tex] when [tex]\(x = 1\)[/tex] and [tex]\(y = 2\)[/tex], follow these steps:

1. Calculate [tex]\(x^2\)[/tex]:
[tex]\[ x = 1 \implies x^2 = 1^2 = 1 \][/tex]

2. Calculate [tex]\(y^2\)[/tex]:
[tex]\[ y = 2 \implies y^2 = 2^2 = 4 \][/tex]

3. Sum [tex]\(x^2\)[/tex] and [tex]\(y^2\)[/tex]:
[tex]\[ x^2 + y^2 = 1 + 4 = 5 \][/tex]

4. Subtract the sum from 12:
[tex]\[ 12 - (x^2 + y^2) = 12 - 5 = 7 \][/tex]

So, [tex]\(x^2\)[/tex] is 1, [tex]\(y^2\)[/tex] is 4, and finally, [tex]\(12 - (x^2 + y^2)\)[/tex] is 7.