Rewrite the following expression in standard form.

[tex]35 x^3 + 22 x^5 - 4 x^4 - 3 x^2 - 5[/tex]

A. [tex]-5 - 3 x^2 + 35 x^3 - 4 x^4 + 22 x^5[/tex]

B. [tex]35 x^3 + 22 x^5 - 4 x^4 - 5 - 3 x^2[/tex]

C. [tex]22 x^5 - 4 x^4 + 35 x^3 - 3 x^2 - 5[/tex]

D. No Solution



Answer :

To rewrite the polynomial expression [tex]\( 35 x^3 + 22 x^5 - 4 x^4 - 3 x^2 - 5 \)[/tex] in standard form, we need to arrange the terms in descending order of their powers. Here’s a step-by-step process to achieve this:

1. Identify the powers of [tex]\( x \)[/tex] in each term:
- [tex]\( 35 x^3 \)[/tex] has a power of 3.
- [tex]\( 22 x^5 \)[/tex] has a power of 5.
- [tex]\( -4 x^4 \)[/tex] has a power of 4.
- [tex]\( -3 x^2 \)[/tex] has a power of 2.
- [tex]\( -5 \)[/tex] has a power of 0 (constant term).

2. Arrange these terms in order from the highest power of [tex]\( x \)[/tex] to the lowest:
- The highest power is [tex]\( 22 x^5 \)[/tex].
- The next highest power is [tex]\( -4 x^4 \)[/tex].
- Following is [tex]\( 35 x^3 \)[/tex].
- Then [tex]\( -3 x^2 \)[/tex].
- Finally, the constant term [tex]\( -5 \)[/tex].

3. Combine these ordered terms to form the polynomial in standard form:
[tex]\[ 22 x^5 - 4 x^4 + 35 x^3 - 3 x^2 - 5 \][/tex]

Comparing this result with the provided options, we see that it matches:

C. [tex]\( 22 x^5 - 4 x^4 + 35 x^3 - 3 x^2 - 5 \)[/tex]

Hence, the correct standard form of the given expression is:

C. [tex]\( 22 x^5 - 4 x^4 + 35 x^3 - 3 x^2 - 5 \)[/tex]