What is the domain of the function [tex]y=\sqrt{x+6}-7[/tex]?

A. [tex]x \geq -7[/tex]
B. [tex]x \geq -6[/tex]
C. [tex]x \geq B[/tex]
D. [tex]x \geq 7[/tex]



Answer :

To determine the domain of the function [tex]\( y = \sqrt{x + 6} - 7 \)[/tex], we need to consider the conditions under which the function is defined.

The function includes a square root, [tex]\( \sqrt{x + 6} \)[/tex]. The square root function is only defined for non-negative values inside the root. Therefore, the expression inside the square root must be greater than or equal to zero:

[tex]\[ x + 6 \geq 0. \][/tex]

Next, we solve this inequality for [tex]\( x \)[/tex]:

[tex]\[ x + 6 \geq 0 \quad \Rightarrow \quad x \geq -6. \][/tex]

Thus, the domain of the function [tex]\( y = \sqrt{x + 6} - 7 \)[/tex] is [tex]\( x \geq -6 \)[/tex].

So, the correct answer is:

[tex]\[ \boxed{x \geq -6} \][/tex]