Points [tex]$A, B$[/tex], and [tex]$C$[/tex] form a triangle. Complete the statements to prove that the sum of the interior angles of [tex]$\triangle ABC$[/tex] is [tex]$180^{\circ}$[/tex].

\begin{tabular}{|l|l|}
\hline
Statement & Reason \\
\hline
Points [tex]$A, B$[/tex], and [tex]$C$[/tex] form a triangle. & Given \\
\hline
Let [tex]$\overline{DE}$[/tex] be a line passing through [tex]$B$[/tex] and parallel to [tex]$\overline{AC}$[/tex]. & Definition of parallel lines \\
\hline
[tex]$\angle 3 \cong \angle 5$[/tex] and [tex]$\angle 1 \cong \angle 4$[/tex]. & Alternate interior angles are congruent \\
\hline
[tex]$m\angle 1 = m\angle 4$[/tex] and [tex]$m\angle 3 = m\angle 5$[/tex]. & Definition of congruent angles \\
\hline
[tex]$m\angle 4 + m\angle 2 + m\angle 5 = 180^{\circ}$[/tex]. & Angle addition and definition of a straight line \\
\hline
[tex]$m\angle 1 + m\angle 2 + m\angle 3 = 180^{\circ}$[/tex]. & Substitution \\
\hline
\end{tabular}



Answer :

Given points [tex]\( A, B, \)[/tex] and [tex]\( C \)[/tex] form a triangle. We are to prove that the sum of the interior angles of [tex]\( \triangle ABC \)[/tex] is [tex]\( 180^\circ \)[/tex].

Here is the detailed step-by-step solution:

1. Statement: Points [tex]\(A, B,\)[/tex] and [tex]\(C\)[/tex] form a triangle.
Reason: given

2. Statement: Let [tex]\(\overline{DE}\)[/tex] be a line passing through [tex]\(B\)[/tex] and parallel to [tex]\(\overline{AC}\)[/tex].
Reason: definition of parallel lines

3. Statement: [tex]\(\angle 3 \cong \angle 5\)[/tex] and [tex]\(\angle 1 \cong \angle 4\)[/tex].
Reason: corresponding angles of parallel lines

4. Statement: [tex]\(m\angle 1 = m\angle 4\)[/tex] and [tex]\(m\angle 3 = m\angle 5\)[/tex].
Reason: equal measures of congruent angles

5. Statement: [tex]\(m\angle 4 + m\angle 2 + m\angle 5 = 180^\circ\)[/tex].
Reason: angle addition and definition of a straight line

6. Statement: [tex]\(m\angle 1 + m\angle 2 + m\angle 3 = 180^\circ\)[/tex].
Reason: substitution

Therefore, the sum of the interior angles of [tex]\(\triangle ABC\)[/tex] is [tex]\(180^\circ\)[/tex].