Solve the inequality.

[tex]\[ 8\left(\frac{1}{2} x-\frac{1}{4}\right) \ \textgreater \ 12 - 2x \][/tex]

A. [tex]\[ x \ \textgreater \ \frac{7}{3} \][/tex]

B. [tex]\[ x \ \textgreater \ 7 \][/tex]

C. [tex]\[ x \ \textgreater \ -5 \][/tex]

D. [tex]\[ x \ \textgreater \ \frac{5}{3} \][/tex]



Answer :

To solve the inequality
[tex]\[ 8\left(\frac{1}{2} x - \frac{1}{4}\right) > 12 - 2x \][/tex]
we will proceed step-by-step:

1. Distribute the 8 inside the parentheses:
[tex]\[ 8 \left(\frac{1}{2} x - \frac{1}{4}\right) = 8 \cdot \frac{1}{2} x - 8 \cdot \frac{1}{4} \][/tex]
[tex]\[ = 4x - 2 \][/tex]

2. Rewrite the inequality:
[tex]\[ 4x - 2 > 12 - 2x \][/tex]

3. Add [tex]\(2x\)[/tex] to both sides to get all [tex]\(x\)[/tex]-terms on one side:
[tex]\[ 4x - 2 + 2x > 12 - 2x + 2x \][/tex]
[tex]\[ 6x - 2 > 12 \][/tex]

4. Add 2 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 6x - 2 + 2 > 12 + 2 \][/tex]
[tex]\[ 6x > 14 \][/tex]

5. Divide both sides by 6 to solve for [tex]\(x\)[/tex]:
[tex]\[ x > \frac{14}{6} \][/tex]

6. Simplify the fraction:
[tex]\[ x > \frac{14}{6} = \frac{7}{3} \][/tex]

The solution to the inequality is:
[tex]\[ x > \frac{7}{3} \][/tex]

Hence, the correct answer is:
A. [tex]\(x > \frac{7}{3}\)[/tex]