Solve the inequality.

[tex]\[ 8\left(\frac{x}{4}-6\right) \geq 4 \][/tex]

A. [tex]\[ x \geq 11 \][/tex]

B. [tex]\[ x \geq 5 \][/tex]

C. [tex]\[ x \geq -22 \][/tex]

D. [tex]\[ x \geq 26 \][/tex]



Answer :

To solve the inequality [tex]\(8\left(\frac{x}{4} - 6\right) \geq 4\)[/tex], follow these steps:

1. Distribute the 8 within the parentheses:

[tex]\[ 8 \cdot \left(\frac{x}{4}\right) - 8 \cdot 6 \geq 4 \][/tex]

Simplifying inside the parentheses:

[tex]\[ 2x - 48 \geq 4 \][/tex]

This is because [tex]\(8 \cdot \frac{x}{4} = 2x\)[/tex] and [tex]\(8 \cdot 6 = 48\)[/tex].

2. Isolate the term involving [tex]\(x\)[/tex]:

To do this, add 48 to both sides of the inequality:

[tex]\[ 2x - 48 + 48 \geq 4 + 48 \][/tex]

Simplifying the equation:

[tex]\[ 2x \geq 52 \][/tex]

3. Solve for [tex]\(x\)[/tex]:

Finally, divide both sides of the inequality by 2:

[tex]\[ \frac{2x}{2} \geq \frac{52}{2} \][/tex]

Simplifying:

[tex]\[ x \geq 26 \][/tex]

Therefore, the solution to the inequality is [tex]\(x \geq 26\)[/tex], which corresponds to option D.

So the correct answer is:
D. [tex]\(x \geq 26\)[/tex]