Given the table of values below, which of the following ordered pairs are found on the graph of the inverse function?

\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$f ( x )$[/tex] \\
\hline -2 & 14 \\
\hline -1 & 10 \\
\hline 0 & 6 \\
\hline 1 & 2 \\
\hline 2 & -2 \\
\hline
\end{tabular}

A. [tex]$(2, -14), (1, -10), (0, -6), (-1, -2), (-2, 2)$[/tex]

B. [tex]$(-14, 2), (-10, 1), (-6, 0), (-2, -1), (2, -2)$[/tex]

C. [tex]$(14, -2), (10, -1), (6, 0), (2, 1), (-2, 2)$[/tex]

D. [tex]$(-2, -14), (-1, -10), (0, -6), (1, -2), (2, 2)$[/tex]



Answer :

To determine which ordered pairs are found on the graph of the inverse function, we need to understand that for an inverse function, the coordinates [tex]\((x, y)\)[/tex] of the original function [tex]\( f(x) \)[/tex] will be swapped to [tex]\((y, x)\)[/tex] on the graph of the inverse function [tex]\( f^{-1}(x) \)[/tex].

Given the table of values:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -2 & 14 \\ \hline -1 & 10 \\ \hline 0 & 6 \\ \hline 1 & 2 \\ \hline 2 & -2 \\ \hline \end{array} \][/tex]

We convert each [tex]\((x, f(x))\)[/tex] pair to [tex]\((f(x), x)\)[/tex].

Thus, the pairs for the inverse function are:
[tex]\[ (14, -2), (10, -1), (6, 0), (2, 1), (-2, 2) \][/tex]

Now, we compare these reversed pairs with each given choice:

Choice A:
[tex]\((2, -14), (1, -10), (0, -6), (-1, -2), (-2, 2)\)[/tex]

These do not match our expected pairs.

Choice B:
[tex]\((-14, 2), (-10, 1), (-6, 0), (-2, -1), (2, -2)\)[/tex]

These do not match our expected pairs.

Choice C:
[tex]\((14, -2), (10, -1), (6, 0), (2, 1), (-2, 2)\)[/tex]

These match our expected pairs perfectly.

Choice D:
[tex]\((-2, -14), (-1, -10), (0, -6), (1, -2), (2, 2)\)[/tex]

These do not match our expected pairs.

Hence, the choice that contains the ordered pairs found on the graph of the inverse function is:

C. [tex]\((14, -2), (10, -1), (6, 0), (2, 1), (-2, 2)\)[/tex]