Select the correct answer.

What is the completely factored form of this polynomial? [tex]$81 x^4 - 16 y^4$[/tex]

A. [tex]$\left(3 x^2 + 2 y^2\right)(9 x + 4 y)(9 x - 4 y)$[/tex]
B. [tex][tex]$\left(9 x^2 + 4 y^2\right)\left(9 x^2 - 4 y^2\right)$[/tex][/tex]
C. [tex]$\left(9 x^2 + 4 y^2\right)(3 x - 2 y)^2$[/tex]
D. [tex]$\left(9 x^2 + 4 y^2\right)(3 x + 2 y)(3 x - 2 y)$[/tex]



Answer :

To factor the polynomial [tex]\( 81x^4 - 16y^4 \)[/tex], we start by recognizing that this polynomial is a difference of squares.

1. Difference of Squares Formula:
The difference of squares formula states that [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex].

2. Identifying the Squares:
[tex]\[ 81x^4 = (9x^2)^2 \quad \text{and} \quad 16y^4 = (4y^2)^2 \][/tex]

3. Apply the Difference of Squares:
We apply the difference of squares formula to [tex]\( 81x^4 - 16y^4 \)[/tex]:
[tex]\[ 81x^4 - 16y^4 = (9x^2)^2 - (4y^2)^2 = (9x^2 - 4y^2)(9x^2 + 4y^2) \][/tex]

4. Factoring Further:
The term [tex]\( 9x^2 - 4y^2 \)[/tex] is itself a difference of squares:
[tex]\[ 9x^2 - 4y^2 = (3x)^2 - (2y)^2 = (3x - 2y)(3x + 2y) \][/tex]

5. Combining All Factors:
Therefore, the completely factored form of the polynomial [tex]\( 81x^4 - 16y^4 \)[/tex] is:
[tex]\[ (9x^2 - 4y^2)(9x^2 + 4y^2) = (3x - 2y)(3x + 2y)(9x^2 + 4y^2) \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{(9x^2 + 4y^2)(3x + 2y)(3x - 2y)} \][/tex]

So, the answer is option D.