Answered

Select the correct answer.

What is this expression in simplified form?

[tex] \sqrt{12} \cdot 4 \sqrt{3} [/tex]

A. [tex] 4 \sqrt{15} [/tex]

B. 7

C. 6

D. 24



Answer :

To simplify the given expression [tex]\(\sqrt{12} \cdot 4 \sqrt{3}\)[/tex], let's proceed step-by-step:

Step 1: Simplify [tex]\(\sqrt{12}\)[/tex].

[tex]\[ \sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2 \sqrt{3} \][/tex]

Step 2: Substitute [tex]\(\sqrt{12}\)[/tex] with its simplified form in the expression.

[tex]\[ (2 \sqrt{3}) \cdot 4 \sqrt{3} \][/tex]

Step 3: Combine the constants and the square roots.

[tex]\[ = 2 \cdot 4 \cdot (\sqrt{3} \cdot \sqrt{3}) \][/tex]

Step 4: Since [tex]\(\sqrt{3} \cdot \sqrt{3} = 3\)[/tex],

[tex]\[ = 2 \cdot 4 \cdot 3 \][/tex]

Step 5: Multiply the constants.

[tex]\[ = 8 \cdot 3 = 24 \][/tex]

Therefore, the simplified form of the expression is 24.

So, the correct answer is:
24