Answer :

To simplify the given expression [tex]\(8 w^6 (5 w + 9 w^2)\)[/tex], we can follow these steps:

1. Distribute [tex]\(8 w^6\)[/tex] to each term inside the parenthesis:
[tex]\[ 8 w^6 \cdot 5 w + 8 w^6 \cdot 9 w^2 \][/tex]

2. Multiply the coefficients and add the exponents for each term:

- For the first term [tex]\(8 w^6 \cdot 5 w\)[/tex]:
[tex]\[ 8 \cdot 5 \cdot w^6 \cdot w^1 = 40 w^{6+1} = 40 w^7 \][/tex]

- For the second term [tex]\(8 w^6 \cdot 9 w^2\)[/tex]:
[tex]\[ 8 \cdot 9 \cdot w^6 \cdot w^2 = 72 w^{6+2} = 72 w^8 \][/tex]

3. Combine the simplified terms to form the final expression:
[tex]\[ 40 w^7 + 72 w^8 \][/tex]

4. Factor out the greatest common factor [tex]\(w^7\)[/tex] from both terms:
[tex]\[ w^7 (40 + 72 w) \][/tex]

Therefore, the simplified form of the expression is:
[tex]\[ w^7 (40 + 72 w) \][/tex]