Answered

Select the correct answer.

Simplify the following radical expression:

[tex]\[ \sqrt{48} \][/tex]

A. [tex]\( 16 \sqrt{3} \)[/tex]

B. [tex]\( 4 \sqrt{3} \)[/tex]

C. [tex]\( 4 \sqrt{2} \)[/tex]

D. [tex]\( 6 \sqrt{2} \)[/tex]



Answer :

To simplify the radical expression [tex]\( \sqrt{48} \)[/tex], let’s break down the steps:

1. Factor 48 into its prime factors:
[tex]\[ 48 = 16 \times 3 \][/tex]

2. Simplify the square root:
[tex]\[ \sqrt{48} = \sqrt{16 \times 3} \][/tex]
[tex]\[ = \sqrt{16} \times \sqrt{3} \][/tex]

3. Find the square root of 16:
[tex]\[ \sqrt{16} = 4 \][/tex]

4. Combine the results:
[tex]\[ \sqrt{48} = 4 \times \sqrt{3} \][/tex]

So, the simplified form of [tex]\( \sqrt{48} \)[/tex] is [tex]\( 4 \sqrt{3} \)[/tex].

Given the options:
- [tex]\( 16 \sqrt{3} \)[/tex]
- [tex]\( 4 \sqrt{3} \)[/tex]
- [tex]\( 4 \sqrt{2} \)[/tex]
- [tex]\( 6 \sqrt{2} \)[/tex]

The correct answer is [tex]\( 4 \sqrt{3} \)[/tex].