Answered

Select the correct answer.

Simplify the following expression: [tex]4 \sqrt{72}[/tex]

A. [tex]6 \sqrt{24}[/tex]
B. [tex]144 \sqrt{6}[/tex]
C. [tex]24 \sqrt{6}[/tex]
D. [tex]24 \sqrt{2}[/tex]



Answer :

To simplify the expression [tex]\( 4 \sqrt{72} \)[/tex], follow these steps:

1. Factorize the number under the square root:
[tex]\[ 72 = 36 \times 2 \][/tex]

2. Rewrite the square root using the factorized form:
[tex]\[ \sqrt{72} = \sqrt{36 \times 2} \][/tex]

3. Use the property of square roots to separate the factors:
[tex]\[ \sqrt{36 \times 2} = \sqrt{36} \times \sqrt{2} \][/tex]

4. Simplify the square root of 36:
[tex]\[ \sqrt{36} = 6 \][/tex]
Hence,
[tex]\[ \sqrt{36 \times 2} = 6 \times \sqrt{2} \][/tex]

5. Multiply the result by 4:
[tex]\[ 4 \times \sqrt{72} = 4 \times (6 \times \sqrt{2}) = 4 \times 6 \times \sqrt{2} = 24 \sqrt{2} \][/tex]

Thus, the simplified form of [tex]\( 4 \sqrt{72} \)[/tex] is [tex]\( 24 \sqrt{2} \)[/tex].

Therefore, the correct answer is:
D. [tex]\( 24 \sqrt{2} \)[/tex]