Convert [tex]$120^{\circ}$[/tex] to radians.

A. [tex]\frac{2 \pi}{3}[/tex] radians
B. [tex]\frac{3 \pi}{2}[/tex] radians
C. [tex]\frac{3 \pi}{4}[/tex] radians
D. [tex]\frac{5 \pi}{6}[/tex] radians



Answer :

To convert an angle from degrees to radians, we use the conversion formula:

[tex]\[ \text{radians} = \text{degrees} \times \frac{\pi}{180} \][/tex]

Let's apply this formula to convert [tex]\( 120^{\circ} \)[/tex] to radians:

[tex]\[ 120^{\circ} \times \frac{\pi}{180} \][/tex]

Now, we perform the multiplication:

[tex]\[ \frac{120 \pi}{180} \][/tex]

Next, we simplify the fraction:

[tex]\[ \frac{120}{180} = \frac{2}{3} \][/tex]

Thus, the angle in radians is:

[tex]\[ \frac{2 \pi}{3} \][/tex]

Now, we compare this result to the given options:

A. [tex]\( \frac{2 \pi}{3} \)[/tex] radians ⟵ This matches our result.
B. [tex]\( \frac{3 \pi}{2} \)[/tex] radians
C. [tex]\( \frac{3 \pi}{4} \)[/tex] radians
D. [tex]\( \frac{5 \pi}{6} \)[/tex] radians

The correct answer is:

A. [tex]\( \frac{2 \pi}{3} \)[/tex] radians

So, the angle [tex]\( 120^{\circ} \)[/tex] converted to radians is [tex]\( \frac{2 \pi}{3} \)[/tex].