\begin{tabular}{l|l}
[tex]$A = [?] \, \text{cm}^2$[/tex] & [tex]$\frac{\left( b _1 + b _2 \right)}{2} \cdot h$[/tex] \\
\end{tabular}



Answer :

Certainly! Let's work through the problem step-by-step to find the area [tex]\( A \)[/tex] of a trapezoid given the bases [tex]\( b_1 \)[/tex], [tex]\( b_2 \)[/tex], and the height [tex]\( h \)[/tex].

### Step-by-Step Solution

1. Understanding the Area Formula of a Trapezoid:
The area [tex]\( A \)[/tex] of a trapezoid can be calculated using the formula:
[tex]\[ A = \frac{1}{2} \times (b_1 + b_2) \times h \][/tex]
where:
- [tex]\( b_1 \)[/tex] is the length of the first base.
- [tex]\( b_2 \)[/tex] is the length of the second base.
- [tex]\( h \)[/tex] is the height of the trapezoid (the perpendicular distance between the bases).

2. Simplifying the Formula:
We can rewrite the formula as:
[tex]\[ A = \frac{(b_1 + b_2)}{2} \times h \][/tex]

3. Expression for the Area:
Plugging [tex]\( b_1 \)[/tex], [tex]\( b_2 \)[/tex], and [tex]\( h \)[/tex] into this formula, we obtain:
[tex]\[ A = h \times \left( \frac{b_1 + b_2}{2} \right) \][/tex]

4. Final Expression:
Therefore, the area [tex]\( A \)[/tex] of the trapezoid can be expressed as:
[tex]\[ A = h \times \left( \frac{b_1}{2} + \frac{b_2}{2} \right) \][/tex]

So, the area of the trapezoid in terms of [tex]\( b_1 \)[/tex], [tex]\( b_2 \)[/tex], and [tex]\( h \)[/tex] is:
[tex]\[ A = h \left( \frac{b_1}{2} + \frac{b_2}{2} \right) \][/tex]