A magazine company estimates that its monthly cost is [tex]C(x)=700x^2+400x[/tex] and its monthly revenue is [tex]R(x)=-0.4x^3+900x^2-200x+600[/tex], where [tex]x[/tex] is in thousands of magazines sold. The profit is the difference between the revenue and the cost.

What is the profit function, [tex]P(x)[/tex]?

A. [tex]P(x)=-0.4x^3+200x^2-600x+600[/tex]
B. [tex]P(x)=0.4x^3+200x^2-600x+600[/tex]



Answer :

To determine the correct profit function [tex]\(P(x)\)[/tex] for the magazine company, let's go through the step-by-step process of using the given cost function [tex]\(C(x)\)[/tex] and revenue function [tex]\(R(x)\)[/tex].

### Step-by-Step Solution:

1. Identify the given functions:
- Cost function [tex]\(C(x) = 700x^2 + 400x\)[/tex]
- Revenue function [tex]\(R(x) = -0.4x^3 + 900x^2 - 200x + 600\)[/tex]

2. Formulate the profit function [tex]\(P(x)\)[/tex]:
The profit function [tex]\(P(x)\)[/tex] is given by the difference between revenue and cost:
[tex]\[ P(x) = R(x) - C(x) \][/tex]

3. Substitute [tex]\(R(x)\)[/tex] and [tex]\(C(x)\)[/tex] into [tex]\(P(x)\)[/tex]:
[tex]\[ P(x) = \left(-0.4x^3 + 900x^2 - 200x + 600\right) - \left(700x^2 + 400x\right) \][/tex]

4. Simplify the expression:
[tex]\[ P(x) = -0.4x^3 + 900x^2 - 200x + 600 - 700x^2 - 400x \][/tex]
Combine like terms:
[tex]\[ P(x) = -0.4x^3 + (900x^2 - 700x^2) + (-200x - 400x) + 600 \][/tex]
[tex]\[ P(x) = -0.4x^3 + 200x^2 - 600x + 600 \][/tex]

5. Compare with the given choices:
- Option A: [tex]\(P(x) = -0.4x^3 + 200x^2 - 600x + 600\)[/tex]
- Option B: [tex]\(P(x) = 0.4x^3 + 200x^2 - 600x + 600\)[/tex]

6. Determine the correct option:
- The simplified profit function is [tex]\(P(x) = -0.4x^3 + 200x^2 - 600x + 600\)[/tex], which matches Option A.

Therefore, the correct profit function is:
[tex]\[ \boxed{-0.4x^3 + 200x^2 - 600x + 600} \][/tex]

So, the correct answer is Option A.