Select the correct table.

Using the data provided, identify the lake that is not sustainable.

Lake A
\begin{tabular}{|l|c|}
\hline
Recharges (inflows) & Rate (m/minute) \\
\hline
River 1 & 6.0 \\
\hline
Precipitation & 2.4 \\
\hline
River 2 & 2.1 \\
\hline
\begin{tabular}{c}
Discharges \\
(outflows)
\end{tabular} & \\
\hline
Irrigation Canals & 5.1 \\
\hline
Evaporation & 4.0 \\
\hline
\end{tabular}

Lake B
\begin{tabular}{|l|c|}
\hline
Recharges (inflows) & Rate (m/minute) \\
\hline
River 1 & 5.6 \\
\hline
Precipitation & 0.4 \\
\hline
River 2 & 3.1 \\
\hline
\begin{tabular}{c}
Discharges \\
(outflows)
\end{tabular} & \\
\hline
River 3 & 4.3 \\
\hline
Irrigation Canals & 3.1 \\
\hline
Evaporation & 3.5 \\
\hline
\end{tabular}

Lake C
\begin{tabular}{|l|c|}
\hline
Recharges (inflows) & Rate (m/minute) \\
\hline
River 1 & 2.6 \\
\hline
Precipitation & 3.0 \\
\hline
River 2 & 1.2 \\
\hline
\begin{tabular}{c}
Discharges \\
(outflows)
\end{tabular} & \\
\hline
River 3 & 2.3 \\
\hline
Evaporation & 3.5 \\
\hline
\end{tabular}



Answer :

Let's examine the table data step by step to determine which lake is not sustainable.

First, we will compute the total inflows and outflows for each lake.

### Lake A:
Inflows:
- River 1: 6.0 m/minute
- Precipitation: 2.4 m/minute
- River 2: 2.1 m/minute

Total Inflows: [tex]\( 6.0 + 2.4 + 2.1 = 10.5 \)[/tex] m/minute

Outflows:
- Irrigation Canals: 5.1 m/minute
- Evaporation: 4.0 m/minute

Total Outflows: [tex]\( 5.1 + 4.0 = 9.1 \)[/tex] m/minute

Net Inflow: [tex]\( 10.5 - 9.1 = 1.4 \)[/tex] m/minute

### Lake B:
Inflows:
- River 1: 5.6 m/minute
- Precipitation: 0.4 m/minute
- River 2: 3.1 m/minute

Total Inflows: [tex]\( 5.6 + 0.4 + 3.1 = 9.1 \)[/tex] m/minute

Outflows:
- River 3: 4.3 m/minute
- Irrigation Canals: 3.1 m/minute
- Evaporation: 3.5 m/minute

Total Outflows: [tex]\( 4.3 + 3.1 + 3.5 = 10.9 \)[/tex] m/minute

Net Inflow: [tex]\( 9.1 - 10.9 = -1.8 \)[/tex] m/minute

### Lake C:
Inflows:
- River 1: 2.6 m/minute
- Precipitation: 3.0 m/minute
- River 2: 1.2 m/minute

Total Inflows: [tex]\( 2.6 + 3.0 + 1.2 = 6.8 \)[/tex] m/minute

Outflows:
- River 3: 2.3 m/minute
- Evaporation: 3.5 m/minute

Total Outflows: [tex]\( 2.3 + 3.5 = 5.8 \)[/tex] m/minute

Net Inflow: [tex]\( 6.8 - 5.8 = 1.0 \)[/tex] m/minute

### Determining Sustainability:
For a lake to be sustainable, the net inflow should be positive or zero. In this case, Lake B has a negative net inflow of [tex]\(-1.8 \)[/tex] m/minute, indicating it loses more water than it gains.

### Conclusion:
Lake B is not sustainable.