What is this expression in simplest form?

[tex]\[ \frac{x^2 + x - 2}{x^3 - x^2 + 2x - 2} \][/tex]

A. [tex]\(\frac{1}{x+2}\)[/tex]

B. [tex]\(\frac{x-1}{x^2+2}\)[/tex]

C. [tex]\(\frac{x+2}{x^2+2}\)[/tex]

D. [tex]\(\frac{1}{x-2}\)[/tex]



Answer :

To simplify the expression [tex]\(\frac{x^2 + x - 2}{x^3 - x^2 + 2x - 2}\)[/tex], let's go through a systematic step-by-step process:

1. Factoring the numerator:
The numerator is [tex]\(x^2 + x - 2\)[/tex]. We need to factor this quadratic expression.

The factors of [tex]\(-2\)[/tex] (constant term) that add up to [tex]\(1\)[/tex] (coefficient of [tex]\(x\)[/tex]) are [tex]\(2\)[/tex] and [tex]\(-1\)[/tex]. Therefore, the numerator can be factored as:
[tex]\[ x^2 + x - 2 = (x + 2)(x - 1) \][/tex]

2. Factoring the denominator:
The denominator is a cubic polynomial [tex]\(x^3 - x^2 + 2x - 2\)[/tex]. We can try to factor this by grouping.

By grouping terms:
[tex]\[ x^3 - x^2 + 2x - 2 = x^2(x - 1) + 2(x - 1) \][/tex]

Notice that [tex]\((x - 1)\)[/tex] is a common factor:
[tex]\[ x^3 - x^2 + 2x - 2 = (x - 1)(x^2 + 2) \][/tex]

3. Simplifying the fraction:
Now, substitute the factored forms into the original fraction:
[tex]\[ \frac{x^2 + x - 2}{x^3 - x^2 + 2x - 2} = \frac{(x + 2)(x - 1)}{(x - 1)(x^2 + 2)} \][/tex]

We can cancel the common factor [tex]\((x - 1)\)[/tex] from the numerator and the denominator:
[tex]\[ \frac{(x + 2)(x - 1)}{(x - 1)(x^2 + 2)} = \frac{x + 2}{x^2 + 2} \][/tex]

So, the simplest form of the expression is:
[tex]\[ \frac{x + 2}{x^2 + 2} \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{\frac{x+2}{x^2+2}} \][/tex]

This corresponds to option [tex]\(C\)[/tex].