9. Find the range of the function [tex]f(x) = x^2 - 5x[/tex] for the domain [tex]\{2, 4, 7\}[/tex].

Range: [tex]$\qquad$[/tex]



Answer :

To find the range of the function [tex]\( f(x) = x^2 - 5x \)[/tex] for the given domain [tex]\(\{2, 4, 7\}\)[/tex], we will evaluate the function at each value in the domain:

1. Evaluating at [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 2^2 - 5 \cdot 2 = 4 - 10 = -6 \][/tex]

2. Evaluating at [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 4^2 - 5 \cdot 4 = 16 - 20 = -4 \][/tex]

3. Evaluating at [tex]\( x = 7 \)[/tex]:
[tex]\[ f(7) = 7^2 - 5 \cdot 7 = 49 - 35 = 14 \][/tex]

So, the range of the function [tex]\( f(x) = x^2 - 5x \)[/tex] for the domain [tex]\(\{2, 4, 7\}\)[/tex] is:

[tex]\[ \{-6, -4, 14\} \][/tex]