Answer :

To solve the quadratic equation [tex]\(3w^2 + 14 = -13w\)[/tex] for [tex]\(w\)[/tex], follow these steps:

1. Rewrite the equation in standard form:

Begin by bringing all terms to one side of the equation so it is set to zero. This means you need to add [tex]\(13w\)[/tex] to both sides of the equation.

[tex]\[ 3w^2 + 14 + 13w = 0 \][/tex]

Rearrange the terms to match the standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:

[tex]\[ 3w^2 + 13w + 14 = 0 \][/tex]

2. Identify the coefficients:

In the standard form [tex]\(3w^2 + 13w + 14 = 0\)[/tex], we can see that:
- [tex]\(a = 3\)[/tex]
- [tex]\(b = 13\)[/tex]
- [tex]\(c = 14\)[/tex]

3. Use the quadratic formula:

The quadratic formula is given by:

[tex]\[ w = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]

Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:

[tex]\[ w = \frac{{-13 \pm \sqrt{{13^2 - 4 \cdot 3 \cdot 14}}}}{2 \cdot 3} \][/tex]

4. Simplify under the square root:

Compute the discriminant [tex]\(\Delta = b^2 - 4ac\)[/tex]:

[tex]\[ \Delta = 13^2 - 4 \cdot 3 \cdot 14 \][/tex]

Calculate [tex]\(13^2 = 169\)[/tex] and [tex]\(4 \cdot 3 \cdot 14 = 168\)[/tex]:

[tex]\[ \Delta = 169 - 168 = 1 \][/tex]

5. Substitute back into the quadratic formula:

Now we have:

[tex]\[ w = \frac{{-13 \pm \sqrt{1}}}{6} \][/tex]

[tex]\(\sqrt{1} = 1\)[/tex], so:

[tex]\[ w = \frac{{-13 \pm 1}}{6} \][/tex]

6. Find the two solutions:

[tex]\[ w_1 = \frac{{-13 + 1}}{6} = \frac{{-12}}{6} = -2 \][/tex]

[tex]\[ w_2 = \frac{{-13 - 1}}{6} = \frac{{-14}}{6} = -\frac{14}{6} = -\frac{7}{3} \][/tex]

Thus, the solutions to the quadratic equation [tex]\(3w^2 + 14 + 13w = 0\)[/tex] are:

[tex]\[ w = -2 \quad \text{and} \quad w = -\frac{7}{3} \][/tex]