Given the equation [tex]p = s_1 t - s_2 t[/tex], which equation is solved for [tex]t[/tex]?

A. [tex]t = p \left(s_1 - s_2 \right)[/tex]
B. [tex]f = p - s_1 + s_2[/tex]
C. [tex]t = \frac{p}{s_1 - s_2}[/tex]
D. [tex]t = \frac{p}{s_1 + s_2}[/tex]



Answer :

Sure, let's solve the given equation step-by-step to find [tex]\( t \)[/tex] in terms of [tex]\( p \)[/tex], [tex]\( s_1 \)[/tex], and [tex]\( s_2 \)[/tex].

Given equation:
[tex]\[ p = s_1 t - s_2 t \][/tex]

First, combine the terms on the right-hand side that involve [tex]\( t \)[/tex]:
[tex]\[ p = (s_1 - s_2) t \][/tex]

Next, to isolate [tex]\( t \)[/tex], divide both sides of the equation by [tex]\( (s_1 - s_2) \)[/tex]:
[tex]\[ t = \frac{p}{s_1 - s_2} \][/tex]

So, the equation solved for [tex]\( t \)[/tex] is:
[tex]\[ t = \frac{p}{s_1 - s_2} \][/tex]

Among the given options:
- [tex]\( t=p(s_1-s_2) \)[/tex]
- [tex]\( f=p-s_1+s_2 \)[/tex]
- [tex]\( t=\frac{\rho}{s_1-s_2} \)[/tex]
- [tex]\( t=\frac{p}{s_1+s_2} \)[/tex]

The correct option is:
[tex]\[ t=\frac{p}{s_1-s_2} \][/tex]