The final velocity, [tex][tex]$V$[/tex][/tex], of an object under constant acceleration can be found using the formula [tex]$V^2 = v^2 + 2as$[/tex], where [tex]$v$[/tex] is the initial velocity (in meters per second), [tex][tex]$a$[/tex][/tex] is acceleration (in meters per second squared), and [tex]$s$[/tex] is the distance (in meters).

What is the formula solved for [tex]$a$[/tex]?

A. [tex]v^2 - v^2 - 2s = a[/tex]

B. [tex]v^2 - v^2 + 2s = a[/tex]

C. [tex]\frac{v^2 - v^2}{2s} = a[/tex]

D. [tex]\frac{v^2 + v^2}{2s} = a[/tex]



Answer :

To solve for the acceleration [tex]\(a\)[/tex] in the equation [tex]\(V^2 = v^2 + 2as\)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ V^2 = v^2 + 2as \][/tex]

2. To isolate [tex]\(a\)[/tex], first subtract [tex]\(v^2\)[/tex] from both sides of the equation:
[tex]\[ V^2 - v^2 = 2as \][/tex]

3. Next, solve for [tex]\(a\)[/tex] by dividing both sides of the equation by [tex]\(2s\)[/tex]:
[tex]\[ a = \frac{V^2 - v^2}{2s} \][/tex]

This gives us the formula for acceleration [tex]\(a\)[/tex]:
[tex]\[ a = \frac{V^2 - v^2}{2s} \][/tex]

So, the correct formula solved for [tex]\(a\)[/tex] is:
[tex]\[ \boxed{\frac{V^2 - v^2}{2s} = a} \][/tex]