What is the solution to [tex]$x^3+4 x^2\ \textgreater \ x+4$[/tex]?

A. [tex]-4\ \textless \ x\ \textless \ -1[/tex]

B. [tex]-4\ \textless \ x\ \textless \ 1[/tex]

C. [tex]-4\ \textless \ x\ \textless \ -1[/tex] or [tex]x\ \textgreater \ 1[/tex]

D. [tex]x\ \textless \ -4[/tex] or [tex]-1\ \textless \ x\ \textless \ 1[/tex]



Answer :

To solve the inequality [tex]\( x^3 + 4x^2 > x + 4 \)[/tex], we follow these steps:

1. Move all terms to one side of the inequality:
Subtract [tex]\(x + 4\)[/tex] from both sides to get a single expression on one side:

[tex]\[ x^3 + 4x^2 - x - 4 > 0 \][/tex]

2. Factor the polynomial if possible:
The polynomial [tex]\(x^3 + 4x^2 - x - 4\)[/tex] is not easily factorable, so we need to use other methods such as finding roots through polynomial solving techniques or graphing.

3. Determine the critical points:
Find the roots of the equation [tex]\( x^3 + 4x^2 - x - 4 = 0 \)[/tex]. These roots are points where the polynomial changes sign. Solving for these roots:

Solving [tex]\( x^3 + 4x^2 - x - 4 = 0 \)[/tex] gives us:

[tex]\[ x = -4, x = -1, \text{ and } x = 1 \][/tex]

4. Plot these critical points on a number line:
These points split the number line into intervals. The intervals to test are:
- [tex]\( (-\infty, -4) \)[/tex]
- [tex]\( (-4, -1) \)[/tex]
- [tex]\( (-1, 1) \)[/tex]
- [tex]\( (1, \infty) \)[/tex]

5. Test each interval:
We pick test points from each interval to determine the sign of the polynomial in those intervals.

For interval [tex]\( (-\infty, -4) \)[/tex]:
- Choose [tex]\( x = -5 \)[/tex], [tex]\( x^3 + 4x^2 - x - 4 = -125 + 100 + 5 - 4 = -24 \)[/tex] (negative)

For interval [tex]\( (-4, -1) \)[/tex]:
- Choose [tex]\( x = -2 \)[/tex], [tex]\( x^3 + 4x^2 - x - 4 = -8 + 16 + 2 - 4 = 6 \)[/tex] (positive)

For interval [tex]\( (-1, 1) \)[/tex]:
- Choose [tex]\( x = 0 \)[/tex], [tex]\( x^3 + 4x^2 - x - 4 = 0 + 0 - 0 - 4 = -4 \)[/tex] (negative)

For interval [tex]\( (1, \infty) \)[/tex]:
- Choose [tex]\( x = 2 \)[/tex], [tex]\( x^3 + 4x^2 - x - 4 = 8 + 16 - 2 - 4 = 18 \)[/tex] (positive)

6. Combine the intervals where the polynomial is positive:
Based on our testing:
- [tex]\( x \in (-4, -1) \)[/tex]
- [tex]\( x \in (1, \infty) \)[/tex]

These are the intervals where [tex]\(x^3 + 4x^2 - x - 4 > 0\)[/tex].

Thus, the solution to the inequality [tex]\( x^3 + 4x^2 > x + 4 \)[/tex] is:

[tex]\[ -4 < x < -1 \quad \text{or} \quad x > 1 \][/tex]

Therefore, the correct answer is:

[tex]\[ -4 < x < -1 \quad \text{or} \quad x > 1 \][/tex]