What is the simplified expression for [tex]$6(2(y+x))$[/tex]?

A. [tex]$6y + 12x$[/tex]
B. [tex][tex]$12y + 12x$[/tex][/tex]
C. [tex]$12y + 8x$[/tex]
D. [tex]$8y + 8x$[/tex]



Answer :

To simplify the expression [tex]\( 6(2(y + x)) \)[/tex], follow these steps:

1. Start with the original expression:
[tex]\[ 6(2(y + x)) \][/tex]

2. Use the distributive property to distribute the 6 across the parenthesis:
[tex]\[ 6 \times 2(y + x) \][/tex]

3. Simplify inside the parenthesis first:
[tex]\[ 2(y + x) = 2y + 2x \][/tex]

4. Now distribute the 6 across [tex]\(2y + 2x\)[/tex]:
[tex]\[ 6 \times (2y + 2x) \][/tex]

5. Apply the distributive property again to multiply 6 by each term inside the parenthesis:
[tex]\[ 6 \times 2y + 6 \times 2x \][/tex]

6. Perform the multiplication independently:
[tex]\[ 12y + 12x \][/tex]

Thus, the simplified expression is:
[tex]\[ 12y + 12x \][/tex]

Comparing this result with the given choices:
- [tex]\(6y + 12x\)[/tex]
- [tex]\(12y + 12x\)[/tex]
- [tex]\(12y + 8x\)[/tex]
- [tex]\(8y + 8x\)[/tex]

The correct simplified expression is:
[tex]\[ 12y + 12x \][/tex]

Therefore, the correct choice is:
[tex]\[ \boxed{2} \][/tex]