What is the simplified expression for [tex]$5ab + 9ab - ab$[/tex]?

A. [tex]$12ab$[/tex]
B. [tex][tex]$13ab$[/tex][/tex]
C. [tex]$15ab$[/tex]
D. [tex]$16ab$[/tex]



Answer :

To simplify the expression [tex]\( 5ab + 9ab - ab \)[/tex], we follow these steps:

1. Identify the like terms:
All the terms in the expression [tex]\( 5ab + 9ab - ab \)[/tex] are like terms because they all contain the same variables [tex]\( a \)[/tex] and [tex]\( b \)[/tex] with the same powers (both are raised to the power of 1).

2. Combine the coefficients:
We focus on the coefficients of these like terms to simplify the expression. The coefficients are:
- [tex]\(5\)[/tex] for the term [tex]\( 5ab \)[/tex]
- [tex]\(9\)[/tex] for the term [tex]\( 9ab \)[/tex]
- [tex]\(-1\)[/tex] for the term [tex]\(-ab\)[/tex]

3. Add the coefficients:
To combine the like terms, we add their coefficients together:
[tex]\[ 5 + 9 - 1 \][/tex]

4. Calculate the sum:
Performing the arithmetic:
[tex]\[ 5 + 9 = 14 \][/tex]
[tex]\[ 14 - 1 = 13 \][/tex]

5. Rewrite the expression:
After combining the coefficients, the expression simplifies to:
[tex]\[ 13ab \][/tex]

Therefore, the simplified expression for [tex]\( 5ab + 9ab - ab \)[/tex] is [tex]\( 13ab \)[/tex].

So, the correct answer is:
[tex]\[ 13ab \][/tex]