Given the nature of the text provided, it appears to be two separate mathematical expressions that need proper formatting. Below is the improved formatting for readability:

1. Simplify the expression:
[tex]\[ 3.14 a b^3 \times (-3 a^3 b) \][/tex]

2. Simplify the expression:
[tex]\[ 3.2 \frac{2 x^3 + 8 x^3}{(5 x)(2 x)^2} \][/tex]



Answer :

Let's simplify each expression step-by-step.

### Expression 1: [tex]\(3.14 a b^3 \times (-3 a^3 b)\)[/tex]

1. Combine the coefficients:
[tex]\[ 3.14 \times (-3) = -9.42 \][/tex]

2. Combine the [tex]\(a\)[/tex] terms:
[tex]\[ a \times a^3 = a^{1+3} = a^4 \][/tex]

3. Combine the [tex]\(b\)[/tex] terms:
[tex]\[ b^3 \times b = b^{3+1} = b^4 \][/tex]

4. Put it all together:
[tex]\[ -9.42 a^4 b^4 \][/tex]

The simplified form of Expression 1 is:
[tex]\[ -9.42 a^4 b^4 \][/tex]

### Expression 2: [tex]\(3.2 \frac{2 x^3 + 8 x^3}{(5 x)(2 x)^2}\)[/tex]

1. Simplify the numerator:
[tex]\[ 2 x^3 + 8 x^3 = 10 x^3 \][/tex]

2. Simplify the denominator:

First, simplify [tex]\((2 x)^2\)[/tex]:
[tex]\[ (2 x)^2 = 4 x^2 \][/tex]

Then, multiply it by [tex]\(5 x\)[/tex]:
[tex]\[ (5 x)(4 x^2) = 5 x \times 4 x^2 = 20 x^3 \][/tex]

3. Form the fraction and simplify:
[tex]\[ \frac{10 x^3}{20 x^3} = \frac{10}{20} = \frac{1}{2} \][/tex]

4. Multiply by 3.2:
[tex]\[ 3.2 \times \frac{1}{2} = 1.6 \][/tex]

The simplified form of Expression 2 is:
[tex]\[ 1.6 \][/tex]

### Final Simplified Results

- Expression 1: [tex]\(-9.42 a^4 b^4\)[/tex]
- Expression 2: [tex]\(1.6\)[/tex]

These are the simplified forms for the given mathematical expressions.