Answer :

Certainly! To multiply two radical expressions, we'll need to use the properties of exponents and radicals.

Given the expressions:
[tex]\[ \sqrt[5]{x} \cdot \sqrt[8]{x} \][/tex]

Let's express the radicals in exponential form. Recall that [tex]\(\sqrt[n]{x} = x^{\frac{1}{n}}\)[/tex].

Therefore,
[tex]\[ \sqrt[5]{x} = x^{\frac{1}{5}} \][/tex]
[tex]\[ \sqrt[8]{x} = x^{\frac{1}{8}} \][/tex]

Now, we'll multiply these exponential expressions. When you multiply expressions that have the same base, you add the exponents:

[tex]\[ x^{\frac{1}{5}} \cdot x^{\frac{1}{8}} = x^{\frac{1}{5} + \frac{1}{8}} \][/tex]

Next, we need to add the fractions [tex]\(\frac{1}{5}\)[/tex] and [tex]\(\frac{1}{8}\)[/tex]. To do this, we'll find a common denominator. The least common multiple of 5 and 8 is 40. Let's convert the fractions:

[tex]\[ \frac{1}{5} = \frac{8}{40} \][/tex]
[tex]\[ \frac{1}{8} = \frac{5}{40} \][/tex]

Now, add these fractions together:

[tex]\[ \frac{8}{40} + \frac{5}{40} = \frac{13}{40} \][/tex]

So we have:

[tex]\[ x^{\frac{1}{5} + \frac{1}{8}} = x^{\frac{13}{40}} \][/tex]

To express this result in radical form, recall that [tex]\( x^{\frac{m}{n}} = \sqrt[n]{x^m} \)[/tex]. Therefore,

[tex]\[ x^{\frac{13}{40}} = \sqrt[40]{x^{13}} \][/tex]

Thus, the answer to multiplying [tex]\(\sqrt[5]{x} \cdot \sqrt[8]{x}\)[/tex] and leaving it in radical form is:

[tex]\[ \sqrt[40]{x^{13}} \][/tex]