Simplify: [tex]\left(-7 z^2+3 z^4+7\right)+\left(-5 z-9 z^4\right)[/tex]

A. [tex]-6 z^4-12 z^2+7[/tex]
B. [tex]-16 z^4-2 z^2+7[/tex]
C. [tex]-6 z^6-7 z^2-5 z+7[/tex]
D. [tex]-16 z^4-7 z^2-5 z+7[/tex]



Answer :

To simplify the expression [tex]\(\left(-7 z^2+3 z^4+7\right)+\left(-5 z-9 z^4\right)\)[/tex], we need to follow a series of steps to combine like terms. Let’s go through them one by one:

1. Write out the entire expression:
[tex]\[ (-7 z^2 + 3 z^4 + 7) + (-5 z - 9 z^4) \][/tex]

2. Combine like terms (terms with the same power of [tex]\(z\)[/tex]):

- Look at the [tex]\(z^4\)[/tex] terms:
[tex]\[ 3 z^4 - 9 z^4 \][/tex]
Simplified, this is:
[tex]\[ -6 z^4 \][/tex]

- Look at the [tex]\(z^2\)[/tex] terms:
[tex]\[ -7 z^2 \][/tex]
There are no other [tex]\(z^2\)[/tex] terms to combine with, so this stays:
[tex]\[ -7 z^2 \][/tex]

- Look at the [tex]\(z\)[/tex] terms:
[tex]\[ -5 z \][/tex]
There are no other [tex]\(z\)[/tex] terms to combine with, so this stays:
[tex]\[ -5 z \][/tex]

- Look at the constant terms:
[tex]\[ 7 \][/tex]
There are no other constant terms to combine with, so this stays:
[tex]\[ 7 \][/tex]

3. Combine all the simplified terms:

[tex]\[ -6 z^4 - 7 z^2 - 5 z + 7 \][/tex]

By combining all the like terms correctly, we get the simplified expression:

[tex]\[ \boxed{-6 z^4 - 7 z^2 - 5 z + 7} \][/tex]

We compare this simplified expression with the given choices and find that none exactly match. Let’s double-check our original options though:
(A) [tex]\(-6 z^4 - 12 z^2 + 7\)[/tex]

(B) [tex]\(-16 z^4 - 2 z^2 + 7\)[/tex]

(C) [tex]\(-6 z^6 - 7 z^2 - 5 z + 7\)[/tex]

(D) [tex]\(-16 z^4 - 7 z^2 - 5 z + 7\)[/tex]

None match directly but considering our simplified expression [tex]\(\boxed{-6 z^4 - 7 z^2 - 5 z + 7}\)[/tex], it is evident there seems to be a problem in choices given maybe an option error thus best possible verified ans is directly computed above manually as `well simplified expression`:

So the correct simplified expression is:
[tex]\[ \boxed{-6 z^4 - 7 z^2 - 5 z + 7} \][/tex]