What is the coefficient of the [tex]$c$[/tex]-term of the algebraic expression [tex]$14a - 72r - c - 34d$[/tex]?

A. [tex]-34[/tex]
B. [tex]-1[/tex]
C. [tex]0[/tex]
D. [tex]1[/tex]



Answer :

To determine the coefficient of the [tex]$c$[/tex]-term in the algebraic expression [tex]\(14a - 72r - c - 34d\)[/tex], let's analyze the expression step-by-step:

1. Identify the Term Involving [tex]\(c\)[/tex]:
The given expression is [tex]\(14a - 72r - c - 34d\)[/tex]. We need to find the term that specifically involves the variable [tex]\(c\)[/tex].

2. Isolate the [tex]\(c\)[/tex]-Term:
Among the terms in the expression, we see the term [tex]\(-c\)[/tex].

3. Determine the Coefficient:
The term [tex]\(-c\)[/tex] can be rewritten to make the coefficient more apparent: it's equivalent to [tex]\(-1 \cdot c\)[/tex]. Here, the coefficient of [tex]\(c\)[/tex] is clearly [tex]\(-1\)[/tex].

So, the coefficient of the [tex]\(c\)[/tex]-term in the given algebraic expression is:
[tex]\[ -1 \][/tex]

Thus, the correct answer is [tex]\(-1\)[/tex].