Let [tex]f(x)=7x-18[/tex]. What ordered pair in [tex]f[/tex] corresponds to the equation [tex]f(x)=3[/tex]? Recall [tex]y=f(x)[/tex].

[tex]\[
(x, y) = (\square, \square)
\][/tex]

Substitute the value of [tex]y[/tex] into the equation that defines [tex]f[/tex]. Did you solve that equation for [tex]x[/tex]?

State the range of the relation. (Enter your answers as a comma-separated list.)



Answer :

Sure! Let's go through this step-by-step.

We are given the function:
[tex]\[ f(x) = 7x - 18 \][/tex]

We need to find the ordered pair [tex]\((x, y)\)[/tex] that corresponds to the equation [tex]\(f(x) = 3\)[/tex].

### Step 1: Set up the equation
Given [tex]\(f(x) = 3\)[/tex], we substitute into the function:
[tex]\[ 7x - 18 = 3 \][/tex]

### Step 2: Solve for [tex]\(x\)[/tex]
Add 18 to both sides of the equation to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 7x - 18 + 18 = 3 + 18 \][/tex]
[tex]\[ 7x = 21 \][/tex]

Now, divide both sides by 7 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{21}{7} \][/tex]
[tex]\[ x = 3 \][/tex]

### Step 3: Determine the corresponding [tex]\(y\)[/tex] value
In this case, we already know that [tex]\(f(x) = 3\)[/tex], so:
[tex]\[ y = 3 \][/tex]

### Step 4: Combine [tex]\(x\)[/tex] and [tex]\(y\)[/tex] into an ordered pair
The ordered pair [tex]\((x, y)\)[/tex] is:
[tex]\[ (x, y) = (3, 3) \][/tex]

### Conclusion
Therefore, the ordered pair that corresponds to the equation [tex]\(f(x) = 3\)[/tex] is:
[tex]\[ (3, 3) \][/tex]

### Range of the Relation
Since the function [tex]\(f(x) = 7x - 18\)[/tex] is a linear function, the range is all real numbers [tex]\((-\infty, \infty)\)[/tex].

So the ordered pair for the equation [tex]\(f(x) = 3\)[/tex] is:
[tex]\[ (3, 3) \][/tex]

And the range of the function is:
[tex]\[ (-\infty, \infty) \][/tex]