Put [tex]$3 \sqrt{32} - 2 \sqrt[3]{32}$[/tex] into simplest radical form.

A. [tex]$12 \sqrt{2} - 4 \sqrt[3]{4}$[/tex]
B. [tex][tex]$12 \sqrt{2} - 4 \sqrt[3]{16}$[/tex][/tex]
C. [tex]$12 \sqrt{8} - 4 \sqrt[3]{16}$[/tex]
D. [tex]$12 \sqrt{8} - 4 \sqrt[3]{4}$[/tex]



Answer :

Let's break down the given expressions step by step to put [tex]\( 3 \sqrt{32} - 2 \sqrt[3]{32} \)[/tex] into its simplest radical form and identify the correct equivalent expression from the given choices.

### Step-by-Step Simplification

1. Simplifying [tex]\( \sqrt{32} \)[/tex]:

[tex]\[ \sqrt{32} = \sqrt{16 \times 2} = \sqrt{16} \times \sqrt{2} = 4 \sqrt{2} \][/tex]

Therefore,

[tex]\[ 3 \sqrt{32} = 3 \times 4 \sqrt{2} = 12 \sqrt{2} \][/tex]

2. Simplifying [tex]\( \sqrt[3]{32} \)[/tex]:

[tex]\[ \sqrt[3]{32} = \sqrt[3]{8 \times 4} = \sqrt[3]{8} \times \sqrt[3]{4} = 2 \sqrt[3]{4} \][/tex]

Therefore,

[tex]\[ 2 \sqrt[3]{32} = 2 \times 2 \sqrt[3]{4} = 4 \sqrt[3]{4} \][/tex]

3. Combining the Simplified Expressions:

Now we combine these results:

[tex]\[ 3 \sqrt{32} - 2 \sqrt[3]{32} = 12 \sqrt{2} - 4 \sqrt[3]{4} \][/tex]

### Identifying the Correct Choice

We now compare our result [tex]\( 12 \sqrt{2} - 4 \sqrt[3]{4} \)[/tex] with the given choices:

1. [tex]\( 12 \sqrt{2} - 4 \sqrt[3]{4} \)[/tex]
2. [tex]\( 12 \sqrt{2} - 4 \sqrt[3]{16} \)[/tex]
3. [tex]\( 12 \sqrt{8} - 4 \sqrt[3]{16} \)[/tex]
4. [tex]\( 12 \sqrt{8} - 4 \sqrt[3]{4} \)[/tex]

From our simplification, we can see that the expression in the simplest radical form matches directly with the first choice:

[tex]\[ 12 \sqrt{2} - 4 \sqrt[3]{4} \][/tex]

### Conclusion

Thus, the simplest radical form of [tex]\( 3 \sqrt{32} - 2 \sqrt[3]{32} \)[/tex] is:
[tex]\[ 12 \sqrt{2} - 4 \sqrt[3]{4} \][/tex]

And this corresponds to the first choice listed.